Properties

Label 3.23e2_53.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 53 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$28037= 23^{2} \cdot 53 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 8 x^{3} + 9 x^{2} - 3 x + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.53.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 49 + \left(39 a + 21\right)\cdot 59 + \left(30 a + 47\right)\cdot 59^{2} + \left(54 a + 8\right)\cdot 59^{3} + \left(7 a + 26\right)\cdot 59^{4} + \left(16 a + 32\right)\cdot 59^{5} + \left(44 a + 43\right)\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 54 a + 54 + \left(19 a + 55\right)\cdot 59 + \left(28 a + 38\right)\cdot 59^{2} + \left(4 a + 32\right)\cdot 59^{3} + \left(51 a + 38\right)\cdot 59^{4} + \left(42 a + 40\right)\cdot 59^{5} + \left(14 a + 12\right)\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 25 + 47\cdot 59 + 26\cdot 59^{2} + 2\cdot 59^{3} + 39\cdot 59^{4} + 58\cdot 59^{5} + 42\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 41 + 50\cdot 59 + 12\cdot 59^{2} + 34\cdot 59^{3} + 21\cdot 59^{4} + 30\cdot 59^{5} + 22\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 18 + \left(35 a + 28\right)\cdot 59 + \left(15 a + 35\right)\cdot 59^{2} + \left(37 a + 38\right)\cdot 59^{3} + \left(41 a + 23\right)\cdot 59^{4} + \left(27 a + 14\right)\cdot 59^{5} + 23 a\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 50 + \left(23 a + 31\right)\cdot 59 + \left(43 a + 15\right)\cdot 59^{2} + \left(21 a + 1\right)\cdot 59^{3} + \left(17 a + 28\right)\cdot 59^{4} + 31 a\cdot 59^{5} + \left(35 a + 55\right)\cdot 59^{6} +O\left(59^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)$
$(1,5,3)(2,6,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,4)(5,6)$$-3$
$3$$2$$(3,4)$$1$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,5)(2,6)$$1$
$6$$2$$(1,5)(2,6)(3,4)$$-1$
$8$$3$$(1,5,3)(2,6,4)$$0$
$6$$4$$(1,3,2,4)$$1$
$6$$4$$(1,2)(3,6,4,5)$$-1$
$8$$6$$(1,5,3,2,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.