Properties

Label 3.23e2_43.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 43 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$22747= 23^{2} \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{3} + x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 19 + 33\cdot 59 + \left(43 a + 57\right)\cdot 59^{2} + \left(58 a + 39\right)\cdot 59^{3} + \left(8 a + 25\right)\cdot 59^{4} + \left(30 a + 4\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 47 + \left(58 a + 5\right)\cdot 59 + \left(15 a + 41\right)\cdot 59^{2} + 55\cdot 59^{3} + \left(50 a + 34\right)\cdot 59^{4} + \left(28 a + 25\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 39 a + 32 + \left(17 a + 49\right)\cdot 59 + \left(7 a + 18\right)\cdot 59^{2} + \left(9 a + 49\right)\cdot 59^{3} + \left(56 a + 8\right)\cdot 59^{4} + \left(39 a + 15\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 25 + 20\cdot 59^{2} + 4\cdot 59^{3} + 39\cdot 59^{4} + 51\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 43 + 31\cdot 59^{2} + 35\cdot 59^{3} + 12\cdot 59^{4} + 22\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 12 + \left(41 a + 28\right)\cdot 59 + \left(51 a + 8\right)\cdot 59^{2} + \left(49 a + 51\right)\cdot 59^{3} + \left(2 a + 55\right)\cdot 59^{4} + \left(19 a + 57\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,6,5)$
$(3,4)(5,6)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-3$
$3$ $2$ $(1,2)$ $1$
$3$ $2$ $(1,2)(3,6)$ $-1$
$6$ $2$ $(3,4)(5,6)$ $-1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $1$
$8$ $3$ $(1,3,4)(2,6,5)$ $0$
$6$ $4$ $(1,6,2,3)$ $-1$
$6$ $4$ $(1,5,2,4)(3,6)$ $1$
$8$ $6$ $(1,6,5,2,3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.