Properties

Label 3.23e2_173e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 23^{2} \cdot 173^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$15832441= 23^{2} \cdot 173^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 13 x^{2} - 15 x + 52 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 347 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 33 + 20\cdot 347 + 298\cdot 347^{2} + 271\cdot 347^{3} + 23\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 147 + 126\cdot 347 + 34\cdot 347^{2} + 146\cdot 347^{3} + 245\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 204 + 108\cdot 347 + 151\cdot 347^{2} + 270\cdot 347^{3} + 263\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 311 + 91\cdot 347 + 210\cdot 347^{2} + 5\cdot 347^{3} + 161\cdot 347^{4} +O\left(347^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.