Properties

Label 3.23e2_167.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 167 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$88343= 23^{2} \cdot 167 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 9 x^{3} - 8 x^{2} + 36 x - 56 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 6\cdot 37 + 11\cdot 37^{2} + 6\cdot 37^{3} + 13\cdot 37^{4} + 8\cdot 37^{5} + 32\cdot 37^{6} + 8\cdot 37^{7} + 20\cdot 37^{8} + 26\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 21 + \left(23 a + 12\right)\cdot 37 + \left(12 a + 16\right)\cdot 37^{2} + 28 a\cdot 37^{3} + \left(30 a + 2\right)\cdot 37^{4} + \left(9 a + 31\right)\cdot 37^{5} + \left(23 a + 21\right)\cdot 37^{6} + \left(29 a + 17\right)\cdot 37^{7} + \left(20 a + 33\right)\cdot 37^{8} + \left(13 a + 19\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 29 + 11\cdot 37 + 10\cdot 37^{2} + 20\cdot 37^{3} + 14\cdot 37^{4} + 16\cdot 37^{5} + 3\cdot 37^{6} + 32\cdot 37^{7} + 37^{8} + 21\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 34 a + 33 + \left(13 a + 27\right)\cdot 37 + \left(24 a + 6\right)\cdot 37^{2} + \left(8 a + 27\right)\cdot 37^{3} + \left(6 a + 22\right)\cdot 37^{4} + \left(27 a + 2\right)\cdot 37^{5} + \left(13 a + 31\right)\cdot 37^{6} + \left(7 a + 1\right)\cdot 37^{7} + \left(16 a + 13\right)\cdot 37^{8} + \left(23 a + 16\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 7 a + \left(28 a + 29\right)\cdot 37 + \left(27 a + 28\right)\cdot 37^{2} + \left(25 a + 27\right)\cdot 37^{3} + \left(12 a + 16\right)\cdot 37^{4} + \left(4 a + 5\right)\cdot 37^{5} + \left(11 a + 28\right)\cdot 37^{6} + \left(32 a + 21\right)\cdot 37^{7} + \left(8 a + 19\right)\cdot 37^{8} + \left(3 a + 11\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 28 + \left(8 a + 23\right)\cdot 37 + 9 a\cdot 37^{2} + \left(11 a + 29\right)\cdot 37^{3} + \left(24 a + 4\right)\cdot 37^{4} + \left(32 a + 10\right)\cdot 37^{5} + \left(25 a + 31\right)\cdot 37^{6} + \left(4 a + 28\right)\cdot 37^{7} + \left(28 a + 22\right)\cdot 37^{8} + \left(33 a + 15\right)\cdot 37^{9} +O\left(37^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)(3,6,5)$
$(1,2)(3,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(2,6)$ $-1$
$6$ $2$ $(2,4)(5,6)$ $1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $-1$
$8$ $3$ $(1,2,4)(3,6,5)$ $0$
$6$ $4$ $(1,6,3,2)$ $1$
$6$ $4$ $(1,3)(2,5,6,4)$ $-1$
$8$ $6$ $(1,6,5,3,2,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.