Properties

Label 3.23e2_137.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 137 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$72473= 23^{2} \cdot 137 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 5 x^{3} - 4 x^{2} - 32 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 30 + \left(24 a + 7\right)\cdot 43 + \left(26 a + 7\right)\cdot 43^{2} + \left(29 a + 31\right)\cdot 43^{3} + \left(34 a + 28\right)\cdot 43^{4} + \left(10 a + 33\right)\cdot 43^{5} + \left(37 a + 21\right)\cdot 43^{6} + \left(24 a + 1\right)\cdot 43^{7} + \left(14 a + 16\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 16 + 7\cdot 43 + 7\cdot 43^{2} + 11\cdot 43^{3} + 12\cdot 43^{4} + 9\cdot 43^{5} + 20\cdot 43^{6} + 33\cdot 43^{7} + 6\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 28 + \left(10 a + 39\right)\cdot 43 + \left(a + 23\right)\cdot 43^{2} + \left(3 a + 36\right)\cdot 43^{3} + \left(26 a + 10\right)\cdot 43^{4} + \left(30 a + 19\right)\cdot 43^{5} + \left(34 a + 26\right)\cdot 43^{6} + \left(32 a + 38\right)\cdot 43^{7} + \left(2 a + 38\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 18 + \left(32 a + 17\right)\cdot 43 + \left(41 a + 14\right)\cdot 43^{2} + \left(39 a + 38\right)\cdot 43^{3} + \left(16 a + 33\right)\cdot 43^{4} + \left(12 a + 23\right)\cdot 43^{5} + \left(8 a + 30\right)\cdot 43^{6} + \left(10 a + 36\right)\cdot 43^{7} + \left(40 a + 8\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 14 + \left(18 a + 5\right)\cdot 43 + \left(16 a + 9\right)\cdot 43^{2} + \left(13 a + 34\right)\cdot 43^{3} + \left(8 a + 33\right)\cdot 43^{4} + \left(32 a + 9\right)\cdot 43^{5} + \left(5 a + 5\right)\cdot 43^{6} + \left(18 a + 32\right)\cdot 43^{7} + \left(28 a + 5\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 24 + 8\cdot 43 + 24\cdot 43^{2} + 20\cdot 43^{3} + 9\cdot 43^{4} + 33\cdot 43^{5} + 24\cdot 43^{6} + 29\cdot 43^{7} + 9\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,2)(3,6)$
$(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-3$
$3$ $2$ $(4,5)$ $1$
$3$ $2$ $(2,6)(4,5)$ $-1$
$6$ $2$ $(1,2)(3,6)$ $1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,4,2)(3,5,6)$ $0$
$6$ $4$ $(2,4,6,5)$ $1$
$6$ $4$ $(1,3)(2,4,6,5)$ $-1$
$8$ $6$ $(1,4,6,3,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.