Properties

Label 3.23e2_109e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 23^{2} \cdot 109^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$6285049= 23^{2} \cdot 109^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 7 x^{2} - 10 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 271 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 83 + 193\cdot 271 + 228\cdot 271^{2} + 5\cdot 271^{3} + 163\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 146 + 177\cdot 271 + 59\cdot 271^{2} + 74\cdot 271^{3} + 63\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 154 + 152\cdot 271 + 211\cdot 271^{2} + 188\cdot 271^{3} + 126\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 160 + 18\cdot 271 + 42\cdot 271^{2} + 2\cdot 271^{3} + 189\cdot 271^{4} +O\left(271^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.