Properties

Label 3.23e2_109.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 109 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$57661= 23^{2} \cdot 109 $
Artin number field: Splitting field of $f= x^{6} + x^{4} - 9 x^{3} + 6 x^{2} + 7 x + 49 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 11 + 5\cdot 11^{2} + 6\cdot 11^{3} + 9\cdot 11^{4} + 2\cdot 11^{5} + 10\cdot 11^{6} + 8\cdot 11^{7} + 7\cdot 11^{9} + 2\cdot 11^{10} + 9\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 4 + 8\cdot 11 + 9\cdot 11^{2} + 2\cdot 11^{3} + 4\cdot 11^{4} + 4\cdot 11^{5} + 7\cdot 11^{6} + 10\cdot 11^{7} + 5\cdot 11^{9} + 6\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 8 + \left(6 a + 9\right)\cdot 11 + \left(7 a + 6\right)\cdot 11^{2} + \left(10 a + 4\right)\cdot 11^{3} + \left(3 a + 9\right)\cdot 11^{4} + \left(a + 2\right)\cdot 11^{5} + \left(9 a + 6\right)\cdot 11^{6} + \left(8 a + 3\right)\cdot 11^{7} + \left(3 a + 5\right)\cdot 11^{8} + 8\cdot 11^{9} + \left(3 a + 7\right)\cdot 11^{10} + \left(6 a + 9\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 7 + \left(4 a + 6\right)\cdot 11 + \left(3 a + 8\right)\cdot 11^{2} + 6\cdot 11^{3} + \left(7 a + 3\right)\cdot 11^{4} + \left(9 a + 4\right)\cdot 11^{5} + \left(a + 8\right)\cdot 11^{6} + \left(2 a + 7\right)\cdot 11^{7} + 7 a\cdot 11^{8} + \left(10 a + 6\right)\cdot 11^{9} + \left(7 a + 8\right)\cdot 11^{10} + \left(4 a + 9\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 5 a\cdot 11 + \left(3 a + 8\right)\cdot 11^{2} + \left(8 a + 7\right)\cdot 11^{3} + \left(4 a + 8\right)\cdot 11^{4} + 10\cdot 11^{5} + \left(2 a + 1\right)\cdot 11^{6} + 9 a\cdot 11^{7} + \left(7 a + 7\right)\cdot 11^{8} + \left(a + 3\right)\cdot 11^{9} + \left(2 a + 3\right)\cdot 11^{10} + \left(10 a + 7\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 2 + \left(5 a + 5\right)\cdot 11 + \left(7 a + 5\right)\cdot 11^{2} + \left(2 a + 4\right)\cdot 11^{3} + \left(6 a + 8\right)\cdot 11^{4} + \left(10 a + 7\right)\cdot 11^{5} + \left(8 a + 9\right)\cdot 11^{6} + \left(a + 1\right)\cdot 11^{7} + \left(3 a + 7\right)\cdot 11^{8} + \left(9 a + 2\right)\cdot 11^{9} + \left(8 a + 10\right)\cdot 11^{10} + 11^{11} +O\left(11^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,5,6)$
$(3,4)(5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(3,5)(4,6)$ $-1$
$6$ $2$ $(1,4)(2,6)$ $1$
$6$ $2$ $(1,4)(2,6)(3,5)$ $-1$
$8$ $3$ $(1,3,4)(2,5,6)$ $0$
$6$ $4$ $(3,6,5,4)$ $1$
$6$ $4$ $(1,6,2,4)(3,5)$ $-1$
$8$ $6$ $(1,3,6,2,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.