Properties

Label 3.23e2_109.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 109 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$57661= 23^{2} \cdot 109 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{3} - 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.109.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 46 + \left(65 a + 4\right)\cdot 89 + \left(75 a + 18\right)\cdot 89^{2} + \left(56 a + 45\right)\cdot 89^{3} + \left(22 a + 70\right)\cdot 89^{4} + \left(18 a + 14\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 26 a + 67 + \left(24 a + 10\right)\cdot 89 + \left(16 a + 2\right)\cdot 89^{2} + \left(54 a + 9\right)\cdot 89^{3} + \left(54 a + 69\right)\cdot 89^{4} + \left(45 a + 50\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 63 a + 71 + \left(64 a + 65\right)\cdot 89 + \left(72 a + 2\right)\cdot 89^{2} + \left(34 a + 16\right)\cdot 89^{3} + \left(34 a + 41\right)\cdot 89^{4} + \left(43 a + 48\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 38 + 49\cdot 89 + 70\cdot 89^{2} + 17\cdot 89^{3} + 41\cdot 89^{4} + 35\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 16 + \left(23 a + 37\right)\cdot 89 + \left(13 a + 37\right)\cdot 89^{2} + \left(32 a + 11\right)\cdot 89^{3} + \left(66 a + 83\right)\cdot 89^{4} + \left(70 a + 30\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 30 + 10\cdot 89 + 47\cdot 89^{2} + 78\cdot 89^{3} + 50\cdot 89^{4} + 86\cdot 89^{5} +O\left(89^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,5,6)$
$(3,4)(5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,5)(4,6)$$-3$
$3$$2$$(1,2)$$1$
$3$$2$$(1,2)(3,5)$$-1$
$6$$2$$(3,4)(5,6)$$-1$
$6$$2$$(1,2)(3,4)(5,6)$$1$
$8$$3$$(1,3,4)(2,5,6)$$0$
$6$$4$$(1,5,2,3)$$-1$
$6$$4$$(1,6,2,4)(3,5)$$1$
$8$$6$$(1,5,6,2,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.