Properties

Label 3.23e2_101.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23^{2} \cdot 101 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$53429= 23^{2} \cdot 101 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} + x^{3} + x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.101.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 + 21\cdot 37 + 28\cdot 37^{2} + 36\cdot 37^{3} + 13\cdot 37^{4} + 30\cdot 37^{5} + 34\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 22 + \left(22 a + 35\right)\cdot 37 + \left(24 a + 18\right)\cdot 37^{2} + \left(17 a + 25\right)\cdot 37^{3} + \left(24 a + 23\right)\cdot 37^{4} + \left(14 a + 31\right)\cdot 37^{5} + 22\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 16 + \left(14 a + 1\right)\cdot 37 + \left(12 a + 18\right)\cdot 37^{2} + \left(19 a + 11\right)\cdot 37^{3} + \left(12 a + 13\right)\cdot 37^{4} + \left(22 a + 5\right)\cdot 37^{5} + \left(36 a + 14\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 36 + \left(14 a + 29\right)\cdot 37 + \left(12 a + 20\right)\cdot 37^{2} + \left(19 a + 34\right)\cdot 37^{3} + \left(12 a + 29\right)\cdot 37^{4} + \left(22 a + 28\right)\cdot 37^{5} + \left(36 a + 9\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 2 + \left(22 a + 7\right)\cdot 37 + \left(24 a + 16\right)\cdot 37^{2} + \left(17 a + 2\right)\cdot 37^{3} + \left(24 a + 7\right)\cdot 37^{4} + \left(14 a + 8\right)\cdot 37^{5} + 27\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 6 + 15\cdot 37 + 8\cdot 37^{2} + 23\cdot 37^{4} + 6\cdot 37^{5} + 2\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(1,2)(3,6)$
$(1,2,4)(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,3)(4,5)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(2,3)$$-1$
$6$$2$$(2,4)(3,5)$$-1$
$6$$2$$(1,6)(2,4)(3,5)$$1$
$8$$3$$(1,2,4)(3,5,6)$$0$
$6$$4$$(1,3,6,2)$$-1$
$6$$4$$(1,6)(2,5,3,4)$$1$
$8$$6$$(1,3,5,6,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.