Properties

Label 3.23_61e2.4t5.1
Dimension 3
Group $S_4$
Conductor $ 23 \cdot 61^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$85583= 23 \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + x^{2} - 8 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 46\cdot 59 + 22\cdot 59^{2} + 45\cdot 59^{3} + 16\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 42\cdot 59 + 28\cdot 59^{2} + 30\cdot 59^{3} + 36\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 55\cdot 59 + 14\cdot 59^{2} + 43\cdot 59^{3} + 53\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 32\cdot 59 + 51\cdot 59^{2} + 57\cdot 59^{3} + 10\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.