Properties

Label 3.23_59.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23 \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1357= 23 \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} - 2 x^{3} - 16 x^{2} + 13 x - 17 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.23_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 6 + \left(2 a + 24\right)\cdot 37 + \left(8 a + 1\right)\cdot 37^{2} + \left(a + 16\right)\cdot 37^{3} + \left(10 a + 12\right)\cdot 37^{4} + \left(3 a + 26\right)\cdot 37^{5} + \left(6 a + 11\right)\cdot 37^{7} + \left(28 a + 22\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 9 + 3\cdot 37 + 5\cdot 37^{2} + 6\cdot 37^{3} + 21\cdot 37^{4} + 18\cdot 37^{5} + 9\cdot 37^{6} + 26\cdot 37^{7} + 36\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 36 + 15\cdot 37 + 10\cdot 37^{2} + 4\cdot 37^{3} + 25\cdot 37^{4} + 30\cdot 37^{5} + 28\cdot 37^{6} + 6\cdot 37^{7} + 15\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 13 + \left(34 a + 35\right)\cdot 37 + \left(29 a + 6\right)\cdot 37^{2} + \left(3 a + 6\right)\cdot 37^{3} + \left(28 a + 20\right)\cdot 37^{4} + \left(8 a + 36\right)\cdot 37^{5} + \left(12 a + 16\right)\cdot 37^{6} + \left(3 a + 15\right)\cdot 37^{7} + \left(3 a + 23\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 20 + \left(2 a + 13\right)\cdot 37 + \left(7 a + 18\right)\cdot 37^{2} + \left(33 a + 28\right)\cdot 37^{3} + \left(8 a + 17\right)\cdot 37^{4} + \left(28 a + 6\right)\cdot 37^{5} + \left(24 a + 20\right)\cdot 37^{6} + \left(33 a + 16\right)\cdot 37^{7} + \left(33 a + 32\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 29 + \left(34 a + 18\right)\cdot 37 + \left(28 a + 31\right)\cdot 37^{2} + \left(35 a + 12\right)\cdot 37^{3} + \left(26 a + 14\right)\cdot 37^{4} + \left(33 a + 29\right)\cdot 37^{5} + \left(36 a + 34\right)\cdot 37^{6} + \left(30 a + 34\right)\cdot 37^{7} + \left(8 a + 17\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(5,6)$
$(1,2,4)(3,6,5)$
$(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,3)(4,6)$$-3$
$3$$2$$(2,3)$$1$
$3$$2$$(2,3)(4,6)$$-1$
$6$$2$$(1,4)(5,6)$$-1$
$6$$2$$(1,4)(2,3)(5,6)$$1$
$8$$3$$(1,2,4)(3,6,5)$$0$
$6$$4$$(2,6,3,4)$$-1$
$6$$4$$(1,5)(2,6,3,4)$$1$
$8$$6$$(1,2,6,5,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.