Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 173 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 138\cdot 173 + 76\cdot 173^{2} + 150\cdot 173^{3} + 142\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 43 + 143\cdot 173 + 19\cdot 173^{2} + 148\cdot 173^{3} + 126\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 138 + 145\cdot 173 + 120\cdot 173^{2} + 173^{3} + 146\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 156 + 91\cdot 173 + 128\cdot 173^{2} + 45\cdot 173^{3} + 103\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.