Properties

Label 3.23_149.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 23 \cdot 149 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3427= 23 \cdot 149 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 4 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 33 + \left(13 a + 26\right)\cdot 37 + \left(17 a + 23\right)\cdot 37^{2} + \left(35 a + 25\right)\cdot 37^{3} + \left(34 a + 20\right)\cdot 37^{4} + 8 a\cdot 37^{5} + \left(32 a + 28\right)\cdot 37^{6} + \left(34 a + 31\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 11 + 35\cdot 37 + 13\cdot 37^{2} + 26\cdot 37^{3} + 33\cdot 37^{4} + 11\cdot 37^{5} + 30\cdot 37^{6} + 8\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 10 + \left(23 a + 22\right)\cdot 37 + \left(19 a + 5\right)\cdot 37^{2} + \left(a + 2\right)\cdot 37^{3} + \left(2 a + 14\right)\cdot 37^{4} + \left(28 a + 1\right)\cdot 37^{5} + 4 a\cdot 37^{6} + \left(2 a + 28\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 19 + 19\cdot 37 + 7\cdot 37^{2} + 31\cdot 37^{4} + 12\cdot 37^{5} + 5\cdot 37^{6} + 32\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 19 a + \left(28 a + 30\right)\cdot 37 + \left(34 a + 11\right)\cdot 37^{2} + \left(35 a + 29\right)\cdot 37^{3} + \left(20 a + 18\right)\cdot 37^{4} + \left(22 a + 7\right)\cdot 37^{5} + \left(29 a + 31\right)\cdot 37^{6} + \left(4 a + 28\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 2 + \left(8 a + 14\right)\cdot 37 + \left(2 a + 11\right)\cdot 37^{2} + \left(a + 27\right)\cdot 37^{3} + \left(16 a + 29\right)\cdot 37^{4} + \left(14 a + 2\right)\cdot 37^{5} + \left(7 a + 16\right)\cdot 37^{6} + \left(32 a + 18\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,5)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(1,5)$ $1$
$3$ $2$ $(1,5)(2,4)$ $-1$
$6$ $2$ $(2,3)(4,6)$ $1$
$6$ $2$ $(1,5)(2,3)(4,6)$ $-1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,4,5,2)$ $1$
$6$ $4$ $(1,5)(2,6,4,3)$ $-1$
$8$ $6$ $(1,4,6,5,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.