Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 19.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{3} + 5 x + 57 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 a^{2} + 3 a + 25 + \left(48 a^{2} + 6 a + 15\right)\cdot 59 + \left(10 a^{2} + 21 a + 46\right)\cdot 59^{2} + \left(47 a^{2} + 6 a + 40\right)\cdot 59^{3} + \left(47 a^{2} + 55 a + 33\right)\cdot 59^{4} + \left(29 a^{2} + 45 a + 16\right)\cdot 59^{5} + \left(33 a^{2} + 21 a + 57\right)\cdot 59^{6} + \left(8 a^{2} + 39 a + 36\right)\cdot 59^{7} + \left(44 a^{2} + 29 a + 13\right)\cdot 59^{8} + \left(34 a^{2} + 31 a + 12\right)\cdot 59^{9} + \left(47 a^{2} + 2 a + 30\right)\cdot 59^{10} + \left(3 a^{2} + 57 a + 33\right)\cdot 59^{11} + \left(29 a^{2} + 20 a + 40\right)\cdot 59^{12} + \left(21 a^{2} + 28 a + 46\right)\cdot 59^{13} + \left(5 a^{2} + 39 a + 43\right)\cdot 59^{14} + \left(46 a^{2} + 52 a + 14\right)\cdot 59^{15} + \left(45 a^{2} + 18 a + 49\right)\cdot 59^{16} + \left(47 a^{2} + 54 a + 51\right)\cdot 59^{17} + \left(19 a^{2} + 56 a + 10\right)\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 55 a^{2} + 32 a + 11 + \left(33 a^{2} + 40 a + 1\right)\cdot 59 + \left(58 a^{2} + 26 a + 52\right)\cdot 59^{2} + \left(10 a^{2} + 10 a + 40\right)\cdot 59^{3} + \left(33 a^{2} + 38 a + 18\right)\cdot 59^{4} + \left(15 a^{2} + 34 a + 36\right)\cdot 59^{5} + \left(20 a^{2} + 31 a + 38\right)\cdot 59^{6} + \left(23 a^{2} + 41 a + 12\right)\cdot 59^{7} + \left(52 a^{2} + 15 a + 4\right)\cdot 59^{8} + \left(42 a^{2} + 3 a + 19\right)\cdot 59^{9} + \left(2 a^{2} + 11 a + 20\right)\cdot 59^{10} + \left(52 a^{2} + 9 a + 8\right)\cdot 59^{11} + \left(10 a^{2} + a + 24\right)\cdot 59^{12} + \left(18 a^{2} + 33 a + 54\right)\cdot 59^{13} + \left(32 a^{2} + 33 a + 39\right)\cdot 59^{14} + \left(25 a^{2} + 40 a + 8\right)\cdot 59^{15} + \left(56 a^{2} + 47 a + 51\right)\cdot 59^{16} + \left(21 a^{2} + 15 a + 5\right)\cdot 59^{17} + \left(42 a^{2} + 49 a + 14\right)\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 31 a^{2} + 35 a + 39 + \left(24 a^{2} + 27 a + 34\right)\cdot 59 + \left(2 a^{2} + 18 a + 57\right)\cdot 59^{2} + \left(16 a^{2} + 49 a + 54\right)\cdot 59^{3} + \left(2 a^{2} + 41 a + 58\right)\cdot 59^{4} + \left(56 a^{2} + 20 a + 44\right)\cdot 59^{5} + \left(3 a^{2} + 44 a + 17\right)\cdot 59^{6} + \left(23 a^{2} + 11 a + 26\right)\cdot 59^{7} + \left(27 a^{2} + 27 a + 36\right)\cdot 59^{8} + \left(48 a^{2} + 22 a + 18\right)\cdot 59^{9} + \left(50 a^{2} + 35 a + 21\right)\cdot 59^{10} + \left(10 a^{2} + 28 a + 37\right)\cdot 59^{11} + \left(16 a^{2} + 53 a + 56\right)\cdot 59^{12} + \left(8 a^{2} + 38 a + 41\right)\cdot 59^{13} + \left(43 a^{2} + 9 a + 51\right)\cdot 59^{14} + \left(23 a^{2} + 55 a + 18\right)\cdot 59^{15} + \left(25 a^{2} + 19 a + 40\right)\cdot 59^{16} + \left(42 a^{2} + 57 a + 53\right)\cdot 59^{17} + \left(53 a^{2} + 16 a + 5\right)\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 14 + 39\cdot 59 + 55\cdot 59^{2} + 54\cdot 59^{3} + 2\cdot 59^{4} + 23\cdot 59^{5} + 32\cdot 59^{6} + 54\cdot 59^{7} + 5\cdot 59^{8} + 12\cdot 59^{9} + 26\cdot 59^{10} + 34\cdot 59^{11} + 59^{13} + 43\cdot 59^{14} + 22\cdot 59^{15} + 11\cdot 59^{16} + 3\cdot 59^{17} + 28\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 55 + 38\cdot 59 + 12\cdot 59^{2} + 53\cdot 59^{3} + 56\cdot 59^{4} + 26\cdot 59^{5} + 40\cdot 59^{6} + 50\cdot 59^{7} + 18\cdot 59^{8} + 24\cdot 59^{9} + 7\cdot 59^{10} + 56\cdot 59^{11} + 46\cdot 59^{12} + 7\cdot 59^{13} + 33\cdot 59^{14} + 19\cdot 59^{15} + 41\cdot 59^{16} + 46\cdot 59^{17} + 15\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 54 + 44\cdot 59 + 35\cdot 59^{2} + 51\cdot 59^{3} + 2\cdot 59^{4} + 9\cdot 59^{5} + 6\cdot 59^{7} + 2\cdot 59^{8} + 56\cdot 59^{9} + 22\cdot 59^{10} + 47\cdot 59^{11} + 39\cdot 59^{12} + 25\cdot 59^{13} + 49\cdot 59^{14} + 13\cdot 59^{15} + 19\cdot 59^{16} + 2\cdot 59^{17} + 31\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 30 a^{2} + 50 a + 26 + \left(7 a^{2} + 14 a + 11\right)\cdot 59 + \left(11 a^{2} + 43 a + 51\right)\cdot 59^{2} + \left(22 a^{2} + 13 a + 38\right)\cdot 59^{3} + \left(34 a^{2} + 7 a + 22\right)\cdot 59^{4} + \left(3 a + 45\right)\cdot 59^{5} + \left(55 a^{2} + 35 a + 16\right)\cdot 59^{6} + \left(46 a^{2} + 12 a + 32\right)\cdot 59^{7} + \left(18 a^{2} + 16 a + 49\right)\cdot 59^{8} + \left(22 a^{2} + 45 a + 48\right)\cdot 59^{9} + \left(12 a^{2} + 51 a + 32\right)\cdot 59^{10} + \left(18 a^{2} + 2 a + 13\right)\cdot 59^{11} + \left(4 a^{2} + 40 a + 2\right)\cdot 59^{12} + \left(29 a^{2} + 5 a + 12\right)\cdot 59^{13} + \left(a^{2} + 7 a + 55\right)\cdot 59^{14} + \left(52 a^{2} + 31 a + 37\right)\cdot 59^{15} + \left(35 a^{2} + 9 a + 41\right)\cdot 59^{16} + \left(34 a^{2} + 39 a + 8\right)\cdot 59^{17} + \left(42 a^{2} + 3 a + 54\right)\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 33 a^{2} + 36 a + 36 + \left(17 a^{2} + 3 a + 5\right)\cdot 59 + \left(48 a^{2} + 48 a + 57\right)\cdot 59^{2} + \left(25 a^{2} + 34 a + 50\right)\cdot 59^{3} + \left(50 a^{2} + 13 a + 36\right)\cdot 59^{4} + \left(42 a^{2} + 21 a + 48\right)\cdot 59^{5} + \left(42 a^{2} + 51 a + 34\right)\cdot 59^{6} + \left(47 a^{2} + 4 a + 54\right)\cdot 59^{7} + \left(46 a^{2} + 27 a + 24\right)\cdot 59^{8} + \left(52 a^{2} + 10 a + 32\right)\cdot 59^{9} + \left(43 a^{2} + 55 a + 39\right)\cdot 59^{10} + \left(47 a^{2} + 46 a + 13\right)\cdot 59^{11} + \left(43 a^{2} + 17 a + 55\right)\cdot 59^{12} + \left(11 a^{2} + 20 a + 32\right)\cdot 59^{13} + \left(25 a^{2} + 18 a + 55\right)\cdot 59^{14} + \left(40 a^{2} + 46 a + 18\right)\cdot 59^{15} + \left(25 a^{2} + a + 27\right)\cdot 59^{16} + \left(2 a^{2} + 4 a + 19\right)\cdot 59^{17} + \left(33 a^{2} + 6 a + 22\right)\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 13 a^{2} + 21 a + 38 + \left(45 a^{2} + 25 a + 44\right)\cdot 59 + \left(45 a^{2} + 19 a + 44\right)\cdot 59^{2} + \left(54 a^{2} + 3 a + 26\right)\cdot 59^{3} + \left(8 a^{2} + 21 a + 2\right)\cdot 59^{4} + \left(32 a^{2} + 51 a + 44\right)\cdot 59^{5} + \left(21 a^{2} + 51 a + 56\right)\cdot 59^{6} + \left(27 a^{2} + 7 a + 20\right)\cdot 59^{7} + \left(46 a^{2} + 2 a + 21\right)\cdot 59^{8} + \left(34 a^{2} + 5 a + 12\right)\cdot 59^{9} + \left(19 a^{2} + 21 a + 35\right)\cdot 59^{10} + \left(44 a^{2} + 32 a + 50\right)\cdot 59^{11} + \left(13 a^{2} + 43 a + 28\right)\cdot 59^{12} + \left(29 a^{2} + 50 a + 13\right)\cdot 59^{13} + \left(10 a^{2} + 9 a + 41\right)\cdot 59^{14} + \left(48 a^{2} + 10 a + 21\right)\cdot 59^{15} + \left(46 a^{2} + 20 a + 13\right)\cdot 59^{16} + \left(27 a^{2} + 6 a + 44\right)\cdot 59^{17} + \left(44 a^{2} + 44 a + 53\right)\cdot 59^{18} +O\left(59^{ 19 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,9,3)(4,6,5)$ |
| $(4,5,6)$ |
| $(1,3,9)(2,6)(4,7)(5,8)$ |
| $(2,8,7)(4,5,6)$ |
| $(1,2)(3,8)(7,9)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $9$ | $2$ | $(2,6)(4,7)(5,8)$ | $1$ |
| $1$ | $3$ | $(1,9,3)(2,7,8)(4,5,6)$ | $-3 \zeta_{3} - 3$ |
| $1$ | $3$ | $(1,3,9)(2,8,7)(4,6,5)$ | $3 \zeta_{3}$ |
| $3$ | $3$ | $(1,9,3)$ | $-\zeta_{3} + 1$ |
| $3$ | $3$ | $(1,3,9)$ | $\zeta_{3} + 2$ |
| $3$ | $3$ | $(1,9,3)(4,5,6)$ | $-2 \zeta_{3} - 1$ |
| $3$ | $3$ | $(1,3,9)(4,6,5)$ | $2 \zeta_{3} + 1$ |
| $3$ | $3$ | $(1,3,9)(2,7,8)(4,6,5)$ | $\zeta_{3} - 1$ |
| $3$ | $3$ | $(1,9,3)(2,8,7)(4,5,6)$ | $-\zeta_{3} - 2$ |
| $6$ | $3$ | $(1,9,3)(4,6,5)$ | $0$ |
| $18$ | $3$ | $(1,8,5)(2,6,9)(3,7,4)$ | $0$ |
| $9$ | $6$ | $(1,3,9)(2,6)(4,7)(5,8)$ | $\zeta_{3}$ |
| $9$ | $6$ | $(1,9,3)(2,6)(4,7)(5,8)$ | $-\zeta_{3} - 1$ |
| $9$ | $6$ | $(1,7,9,8,3,2)(4,6,5)$ | $\zeta_{3}$ |
| $9$ | $6$ | $(1,2,3,8,9,7)(4,5,6)$ | $-\zeta_{3} - 1$ |
| $9$ | $6$ | $(1,5,9,6,3,4)$ | $1$ |
| $9$ | $6$ | $(1,4,3,6,9,5)$ | $1$ |
| $9$ | $6$ | $(1,5,3,4,9,6)(2,8,7)$ | $\zeta_{3}$ |
| $9$ | $6$ | $(1,6,9,4,3,5)(2,7,8)$ | $-\zeta_{3} - 1$ |
| $18$ | $9$ | $(1,8,5,3,7,4,9,2,6)$ | $0$ |
| $18$ | $9$ | $(1,5,7,9,6,8,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.