Properties

Label 3.229e3.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 229^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$12008989= 229^{3} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 29 x^{2} - 43 x + 17 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.229.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 347 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 72 + 81\cdot 347 + 217\cdot 347^{2} + 69\cdot 347^{3} + 44\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 128 + 323\cdot 347 + 236\cdot 347^{2} + 183\cdot 347^{3} + 331\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 170 + 153\cdot 347 + 203\cdot 347^{2} + 175\cdot 347^{3} + 160\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 325 + 135\cdot 347 + 36\cdot 347^{2} + 265\cdot 347^{3} + 157\cdot 347^{4} +O\left(347^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.