Properties

Label 3.229.4t5.2
Dimension 3
Group $S_4$
Conductor $ 229 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$229 $
Artin number field: Splitting field of $f= x^{6} - x^{4} - x^{3} - x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + \left(16 a + 16\right)\cdot 23 + \left(16 a + 3\right)\cdot 23^{2} + \left(16 a + 9\right)\cdot 23^{3} + \left(7 a + 4\right)\cdot 23^{4} + \left(8 a + 14\right)\cdot 23^{5} + \left(a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 10 + \left(6 a + 20\right)\cdot 23 + \left(6 a + 20\right)\cdot 23^{2} + \left(6 a + 2\right)\cdot 23^{3} + \left(15 a + 3\right)\cdot 23^{4} + 14 a\cdot 23^{5} + \left(21 a + 15\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 20 + 6\cdot 23 + 22\cdot 23^{2} + 13\cdot 23^{3} + 16\cdot 23^{4} + 6\cdot 23^{5} + 18\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 15 + 19\cdot 23 + 17\cdot 23^{2} + 20\cdot 23^{3} + 14\cdot 23^{4} + 19\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 20\cdot 23 + 13\cdot 23^{2} + \left(17 a + 5\right)\cdot 23^{3} + \left(22 a + 12\right)\cdot 23^{4} + \left(12 a + 10\right)\cdot 23^{5} + \left(4 a + 11\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 1 + \left(22 a + 9\right)\cdot 23 + \left(22 a + 13\right)\cdot 23^{2} + \left(5 a + 16\right)\cdot 23^{3} + 17\cdot 23^{4} + \left(10 a + 13\right)\cdot 23^{5} + \left(18 a + 7\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)(3,6)$
$(1,4,5)(2,6,3)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,6)(3,4)$ $-1$
$6$ $2$ $(1,3)(4,6)$ $1$
$8$ $3$ $(1,5,4)(2,3,6)$ $0$
$6$ $4$ $(1,6)(2,4,5,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.