Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 a + \left(16 a + 16\right)\cdot 23 + \left(16 a + 3\right)\cdot 23^{2} + \left(16 a + 9\right)\cdot 23^{3} + \left(7 a + 4\right)\cdot 23^{4} + \left(8 a + 14\right)\cdot 23^{5} + \left(a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 18 a + 10 + \left(6 a + 20\right)\cdot 23 + \left(6 a + 20\right)\cdot 23^{2} + \left(6 a + 2\right)\cdot 23^{3} + \left(15 a + 3\right)\cdot 23^{4} + 14 a\cdot 23^{5} + \left(21 a + 15\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 + 6\cdot 23 + 22\cdot 23^{2} + 13\cdot 23^{3} + 16\cdot 23^{4} + 6\cdot 23^{5} + 18\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 15 + 19\cdot 23 + 17\cdot 23^{2} + 20\cdot 23^{3} + 14\cdot 23^{4} + 19\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 a + 20\cdot 23 + 13\cdot 23^{2} + \left(17 a + 5\right)\cdot 23^{3} + \left(22 a + 12\right)\cdot 23^{4} + \left(12 a + 10\right)\cdot 23^{5} + \left(4 a + 11\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 11 a + 1 + \left(22 a + 9\right)\cdot 23 + \left(22 a + 13\right)\cdot 23^{2} + \left(5 a + 16\right)\cdot 23^{3} + 17\cdot 23^{4} + \left(10 a + 13\right)\cdot 23^{5} + \left(18 a + 7\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,3)(4,6)$ |
| $(1,4)(3,6)$ |
| $(1,4,5)(2,6,3)$ |
| $(1,3,2)(4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,6)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,3)(4,6)$ |
$1$ |
| $8$ |
$3$ |
$(1,5,4)(2,3,6)$ |
$0$ |
| $6$ |
$4$ |
$(1,6)(2,4,5,3)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.