Properties

Label 3.2243e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 2243^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$5031049= 2243^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 57\cdot 97 + 42\cdot 97^{2} + 54\cdot 97^{3} + 37\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 40\cdot 97 + 4\cdot 97^{2} + 76\cdot 97^{3} + 64\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 + 75\cdot 97 + 32\cdot 97^{2} + 54\cdot 97^{3} + 41\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 70 + 20\cdot 97 + 17\cdot 97^{2} + 9\cdot 97^{3} + 50\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.