Properties

Label 3.223729.4t4.a.a
Dimension $3$
Group $A_4$
Conductor $223729$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $A_4$
Conductor: \(223729\)\(\medspace = 11^{2} \cdot 43^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.4.223729.1
Galois orbit size: $1$
Smallest permutation container: $A_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.4.223729.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 16x^{2} - 7x + 27 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 14 + 66\cdot 151 + 144\cdot 151^{2} + 93\cdot 151^{3} + 111\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 28 + 31\cdot 151 + 88\cdot 151^{2} + 114\cdot 151^{3} + 139\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 127 + 60\cdot 151 + 11\cdot 151^{2} + 84\cdot 151^{3} + 54\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 134 + 143\cdot 151 + 57\cdot 151^{2} + 9\cdot 151^{3} + 147\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$