Properties

Label 3.205209.4t4.a.a
Dimension $3$
Group $A_4$
Conductor $205209$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $A_4$
Conductor: \(205209\)\(\medspace = 3^{2} \cdot 151^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.205209.1
Galois orbit size: $1$
Smallest permutation container: $A_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.0.205209.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + 4x^{2} - 3x + 12 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6 + 17\cdot 29 + 6\cdot 29^{2} + 11\cdot 29^{3} + 16\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 + 14\cdot 29 + 27\cdot 29^{2} + 21\cdot 29^{3} + 24\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 + 14\cdot 29 + 6\cdot 29^{2} + 9\cdot 29^{3} + 23\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 27 + 11\cdot 29 + 17\cdot 29^{2} + 15\cdot 29^{3} + 22\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.