Properties

Label 3.20339.6t6.a.a
Dimension $3$
Group $A_4\times C_2$
Conductor $20339$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $A_4\times C_2$
Conductor: \(20339\)\(\medspace = 11 \cdot 43^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.37606811.1
Galois orbit size: $1$
Smallest permutation container: $A_4\times C_2$
Parity: odd
Determinant: 1.11.2t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.4.223729.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} - x^{4} + 6x^{3} - 4x^{2} - 32x + 64 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 11 a + 21 + \left(40 a + 19\right)\cdot 47 + \left(13 a + 41\right)\cdot 47^{2} + \left(37 a + 24\right)\cdot 47^{3} + \left(14 a + 14\right)\cdot 47^{4} + \left(7 a + 18\right)\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 36 a + 43 + \left(6 a + 41\right)\cdot 47 + \left(33 a + 28\right)\cdot 47^{2} + \left(9 a + 38\right)\cdot 47^{3} + \left(32 a + 6\right)\cdot 47^{4} + \left(39 a + 18\right)\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 + 22\cdot 47 + 26\cdot 47^{2} + 17\cdot 47^{3} + 40\cdot 47^{4} + 16\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 38 a + 6 + \left(21 a + 14\right)\cdot 47 + \left(42 a + 9\right)\cdot 47^{2} + \left(6 a + 25\right)\cdot 47^{3} + \left(11 a + 39\right)\cdot 47^{4} + \left(8 a + 11\right)\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 a + 35 + \left(25 a + 19\right)\cdot 47 + \left(4 a + 25\right)\cdot 47^{2} + \left(40 a + 43\right)\cdot 47^{3} + \left(35 a + 7\right)\cdot 47^{4} + \left(38 a + 17\right)\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 32 + 23\cdot 47 + 9\cdot 47^{2} + 38\cdot 47^{3} + 31\cdot 47^{4} + 11\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(4,5)$
$(3,6)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$1$$2$$(1,2)(3,6)(4,5)$$-3$
$3$$2$$(4,5)$$1$
$3$$2$$(1,2)(4,5)$$-1$
$4$$3$$(1,4,3)(2,5,6)$$0$
$4$$3$$(1,3,4)(2,6,5)$$0$
$4$$6$$(1,4,6,2,5,3)$$0$
$4$$6$$(1,3,5,2,6,4)$$0$