Properties

Label 3.2029e2.12t33.1c1
Dimension 3
Group $A_5$
Conductor $ 2029^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$4116841= 2029^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 9 x^{3} - 10 x^{2} + x + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 523 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 89 + 63\cdot 523 + 158\cdot 523^{2} + 424\cdot 523^{3} + 195\cdot 523^{4} +O\left(523^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 221 + 98\cdot 523 + 300\cdot 523^{2} + 7\cdot 523^{3} + 82\cdot 523^{4} +O\left(523^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 361 + 25\cdot 523 + 511\cdot 523^{2} + 100\cdot 523^{3} + 462\cdot 523^{4} +O\left(523^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 437 + 335\cdot 523 + 95\cdot 523^{2} + 349\cdot 523^{3} + 94\cdot 523^{4} +O\left(523^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 462 + 522\cdot 523 + 503\cdot 523^{2} + 163\cdot 523^{3} + 211\cdot 523^{4} +O\left(523^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.