Properties

Label 3.19e3_139e2.18t86.1
Dimension 3
Group $C_3 \wr S_3 $
Conductor $ 19^{3} \cdot 139^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3 \wr S_3 $
Conductor:$132522739= 19^{3} \cdot 139^{2} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T86
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 22.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{3} + 6 x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 17\cdot 37 + 31\cdot 37^{2} + 26\cdot 37^{3} + 17\cdot 37^{4} + 28\cdot 37^{5} + 9\cdot 37^{6} + 21\cdot 37^{7} + 21\cdot 37^{8} + 30\cdot 37^{9} + 19\cdot 37^{10} + 22\cdot 37^{11} + 31\cdot 37^{12} + 37^{13} + 28\cdot 37^{14} + 20\cdot 37^{15} + 8\cdot 37^{16} + 32\cdot 37^{17} + 15\cdot 37^{18} + 24\cdot 37^{19} + 35\cdot 37^{20} + 23\cdot 37^{21} +O\left(37^{ 22 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 24 a + 5 + \left(32 a^{2} + 31 a + 26\right)\cdot 37 + \left(26 a^{2} + 36 a + 21\right)\cdot 37^{2} + \left(11 a^{2} + 11 a + 25\right)\cdot 37^{3} + \left(7 a^{2} + 20 a + 23\right)\cdot 37^{4} + \left(34 a^{2} + 29 a + 7\right)\cdot 37^{5} + \left(26 a^{2} + 14 a + 17\right)\cdot 37^{6} + \left(21 a^{2} + 36 a + 3\right)\cdot 37^{7} + \left(2 a^{2} + 30 a + 36\right)\cdot 37^{8} + \left(3 a^{2} + 35 a + 34\right)\cdot 37^{9} + \left(7 a^{2} + 34 a + 31\right)\cdot 37^{10} + \left(28 a^{2} + 28 a + 3\right)\cdot 37^{11} + \left(6 a^{2} + 13 a + 28\right)\cdot 37^{12} + \left(22 a^{2} + 36 a + 10\right)\cdot 37^{13} + \left(27 a^{2} + 28 a + 23\right)\cdot 37^{14} + \left(5 a^{2} + 17 a + 4\right)\cdot 37^{15} + \left(a^{2} + 13 a + 7\right)\cdot 37^{16} + \left(7 a^{2} + 35 a + 16\right)\cdot 37^{17} + \left(28 a^{2} + 21 a + 26\right)\cdot 37^{18} + \left(11 a^{2} + 27 a + 15\right)\cdot 37^{19} + \left(16 a^{2} + 28 a + 2\right)\cdot 37^{20} + \left(25 a^{2} + 27 a + 2\right)\cdot 37^{21} +O\left(37^{ 22 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 14 a + 29 + \left(20 a^{2} + 16 a + 36\right)\cdot 37 + \left(10 a^{2} + 33 a + 6\right)\cdot 37^{2} + \left(25 a^{2} + 6 a + 13\right)\cdot 37^{3} + \left(4 a^{2} + 32 a + 20\right)\cdot 37^{4} + \left(15 a^{2} + 11 a + 36\right)\cdot 37^{5} + \left(19 a^{2} + 34 a + 28\right)\cdot 37^{6} + \left(36 a^{2} + 13 a + 7\right)\cdot 37^{7} + \left(32 a^{2} + 36 a + 18\right)\cdot 37^{8} + \left(17 a^{2} + 12 a + 11\right)\cdot 37^{9} + \left(35 a^{2} + 36 a + 20\right)\cdot 37^{10} + \left(30 a^{2} + 22 a + 30\right)\cdot 37^{11} + \left(23 a^{2} + 12 a\right)\cdot 37^{12} + \left(33 a^{2} + 5 a + 33\right)\cdot 37^{13} + \left(19 a^{2} + 22 a + 10\right)\cdot 37^{14} + \left(22 a^{2} + 3 a + 26\right)\cdot 37^{15} + \left(5 a^{2} + 25 a\right)\cdot 37^{16} + \left(35 a^{2} + 9 a + 24\right)\cdot 37^{17} + \left(19 a^{2} + 24\right)\cdot 37^{18} + \left(7 a^{2} + 5 a + 10\right)\cdot 37^{19} + \left(28 a^{2} + 7 a + 11\right)\cdot 37^{20} + \left(29 a^{2} + 21 a + 22\right)\cdot 37^{21} +O\left(37^{ 22 }\right)$
$r_{ 4 }$ $=$ $ 25 a^{2} + 20 a + 19 + \left(21 a^{2} + 30 a + 5\right)\cdot 37 + \left(30 a^{2} + 24 a + 13\right)\cdot 37^{2} + \left(36 a^{2} + 32 a + 22\right)\cdot 37^{3} + \left(6 a^{2} + 32 a + 29\right)\cdot 37^{4} + \left(23 a^{2} + 32 a + 31\right)\cdot 37^{5} + \left(3 a^{2} + 4 a + 2\right)\cdot 37^{6} + \left(14 a^{2} + 29\right)\cdot 37^{7} + \left(35 a^{2} + 27 a + 27\right)\cdot 37^{8} + \left(5 a^{2} + 11 a\right)\cdot 37^{9} + \left(34 a^{2} + 21 a + 15\right)\cdot 37^{10} + \left(32 a^{2} + 30 a + 1\right)\cdot 37^{11} + \left(33 a^{2} + 4 a + 4\right)\cdot 37^{12} + \left(13 a^{2} + 13 a + 28\right)\cdot 37^{13} + \left(21 a^{2} + 6 a + 16\right)\cdot 37^{14} + \left(21 a^{2} + 22 a + 22\right)\cdot 37^{15} + \left(24 a^{2} + 19 a + 2\right)\cdot 37^{16} + \left(18 a^{2} + 36 a + 32\right)\cdot 37^{17} + \left(29 a^{2} + 30 a + 25\right)\cdot 37^{18} + \left(18 a^{2} + 6 a + 18\right)\cdot 37^{19} + \left(8 a^{2} + 12 a + 6\right)\cdot 37^{20} + \left(a^{2} + 31 a + 19\right)\cdot 37^{21} +O\left(37^{ 22 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + 26 a + 8 + \left(4 a^{2} + 20 a + 26\right)\cdot 37 + \left(32 a^{2} + 21 a + 5\right)\cdot 37^{2} + \left(15 a^{2} + 7 a + 5\right)\cdot 37^{3} + \left(26 a^{2} + 14 a + 26\right)\cdot 37^{4} + \left(15 a^{2} + 5 a + 7\right)\cdot 37^{5} + \left(28 a^{2} + 26 a + 23\right)\cdot 37^{6} + \left(17 a^{2} + 29 a + 24\right)\cdot 37^{7} + \left(15 a^{2} + 35 a + 13\right)\cdot 37^{8} + \left(11 a^{2} + 34 a + 31\right)\cdot 37^{9} + \left(33 a^{2} + 18 a + 25\right)\cdot 37^{10} + \left(3 a^{2} + 9 a + 17\right)\cdot 37^{11} + \left(32 a^{2} + 34 a + 18\right)\cdot 37^{12} + \left(11 a^{2} + a + 6\right)\cdot 37^{13} + \left(3 a^{2} + 22 a\right)\cdot 37^{14} + \left(10 a^{2} + 29 a + 22\right)\cdot 37^{15} + \left(12 a^{2} + 31 a + 14\right)\cdot 37^{16} + \left(21 a^{2} + 33 a + 36\right)\cdot 37^{17} + \left(35 a^{2} + 29 a + 18\right)\cdot 37^{18} + \left(28 a^{2} + 24 a + 10\right)\cdot 37^{19} + \left(13 a^{2} + 4 a + 29\right)\cdot 37^{20} + \left(30 a^{2} + 21\right)\cdot 37^{21} +O\left(37^{ 22 }\right)$
$r_{ 6 }$ $=$ $ 20 + 19\cdot 37 + 31\cdot 37^{2} + 12\cdot 37^{3} + 26\cdot 37^{4} + 12\cdot 37^{5} + 10\cdot 37^{6} + 17\cdot 37^{7} + 5\cdot 37^{8} + 25\cdot 37^{9} + 24\cdot 37^{10} + 32\cdot 37^{12} + 10\cdot 37^{13} + 33\cdot 37^{14} + 9\cdot 37^{15} + 21\cdot 37^{16} + 25\cdot 37^{17} + 14\cdot 37^{18} + 11\cdot 37^{19} + 17\cdot 37^{20} + 14\cdot 37^{21} +O\left(37^{ 22 }\right)$
$r_{ 7 }$ $=$ $ 6 + 32\cdot 37 + 3\cdot 37^{2} + 29\cdot 37^{3} + 4\cdot 37^{4} + 11\cdot 37^{5} + 27\cdot 37^{6} + 34\cdot 37^{7} + 14\cdot 37^{8} + 19\cdot 37^{9} + 13\cdot 37^{10} + 28\cdot 37^{11} + 31\cdot 37^{12} + 7\cdot 37^{13} + 36\cdot 37^{14} + 30\cdot 37^{15} + 27\cdot 37^{16} + 31\cdot 37^{17} + 23\cdot 37^{18} + 5\cdot 37^{19} + 33\cdot 37^{20} + 32\cdot 37^{21} +O\left(37^{ 22 }\right)$
$r_{ 8 }$ $=$ $ 23 a^{2} + 24 a + 15 + \left(21 a + 11\right)\cdot 37 + \left(15 a^{2} + 15 a + 11\right)\cdot 37^{2} + \left(9 a^{2} + 17 a + 16\right)\cdot 37^{3} + \left(3 a^{2} + 2 a + 7\right)\cdot 37^{4} + \left(24 a^{2} + 2 a + 4\right)\cdot 37^{5} + \left(18 a^{2} + 33 a + 21\right)\cdot 37^{6} + \left(34 a^{2} + 7 a + 17\right)\cdot 37^{7} + \left(18 a^{2} + 7 a + 27\right)\cdot 37^{8} + \left(22 a^{2} + 3 a + 1\right)\cdot 37^{9} + \left(33 a^{2} + 20 a + 27\right)\cdot 37^{10} + \left(4 a^{2} + 35 a + 21\right)\cdot 37^{11} + \left(35 a^{2} + 25 a + 30\right)\cdot 37^{12} + \left(2 a^{2} + 35 a + 7\right)\cdot 37^{13} + \left(6 a^{2} + 22 a + 11\right)\cdot 37^{14} + \left(21 a^{2} + 26 a + 29\right)\cdot 37^{15} + \left(23 a^{2} + 28 a + 22\right)\cdot 37^{16} + \left(8 a^{2} + 4 a + 22\right)\cdot 37^{17} + \left(10 a^{2} + 22 a + 28\right)\cdot 37^{18} + \left(33 a^{2} + 21 a + 27\right)\cdot 37^{19} + \left(6 a^{2} + 3 a + 1\right)\cdot 37^{20} + \left(18 a^{2} + 9 a + 10\right)\cdot 37^{21} +O\left(37^{ 22 }\right)$
$r_{ 9 }$ $=$ $ 3 a^{2} + 3 a + 5 + \left(32 a^{2} + 27 a + 10\right)\cdot 37 + \left(32 a^{2} + 15 a + 22\right)\cdot 37^{2} + \left(11 a^{2} + 34 a + 33\right)\cdot 37^{3} + \left(25 a^{2} + 8 a + 28\right)\cdot 37^{4} + \left(35 a^{2} + 29 a + 7\right)\cdot 37^{5} + \left(13 a^{2} + 34 a + 7\right)\cdot 37^{6} + \left(23 a^{2} + 22 a + 29\right)\cdot 37^{7} + \left(5 a^{2} + 10 a + 19\right)\cdot 37^{8} + \left(13 a^{2} + 12 a + 29\right)\cdot 37^{9} + \left(4 a^{2} + 16 a + 6\right)\cdot 37^{10} + \left(10 a^{2} + 20 a + 21\right)\cdot 37^{11} + \left(16 a^{2} + 19 a + 7\right)\cdot 37^{12} + \left(26 a^{2} + 18 a + 4\right)\cdot 37^{13} + \left(32 a^{2} + 8 a + 25\right)\cdot 37^{14} + \left(29 a^{2} + 11 a + 18\right)\cdot 37^{15} + \left(6 a^{2} + 29 a + 5\right)\cdot 37^{16} + \left(20 a^{2} + 27 a + 1\right)\cdot 37^{17} + \left(24 a^{2} + 5 a + 6\right)\cdot 37^{18} + \left(10 a^{2} + 25 a + 23\right)\cdot 37^{19} + \left(17 a + 10\right)\cdot 37^{20} + \left(6 a^{2} + 21 a + 1\right)\cdot 37^{21} +O\left(37^{ 22 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7,6)$
$(3,9,4)$
$(1,9)(3,7)(4,6)$
$(1,6,7)(2,9,8,3,5,4)$
$(2,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$9$ $2$ $(2,3)(4,8)(5,9)$ $-1$ $-1$
$1$ $3$ $(1,7,6)(2,8,5)(3,4,9)$ $3 \zeta_{3}$ $-3 \zeta_{3} - 3$
$1$ $3$ $(1,6,7)(2,5,8)(3,9,4)$ $-3 \zeta_{3} - 3$ $3 \zeta_{3}$
$3$ $3$ $(2,8,5)$ $\zeta_{3} - 1$ $-\zeta_{3} - 2$
$3$ $3$ $(2,5,8)$ $-\zeta_{3} - 2$ $\zeta_{3} - 1$
$3$ $3$ $(1,7,6)(2,5,8)(3,9,4)$ $2 \zeta_{3} + 1$ $-2 \zeta_{3} - 1$
$3$ $3$ $(1,6,7)(2,8,5)(3,4,9)$ $-2 \zeta_{3} - 1$ $2 \zeta_{3} + 1$
$3$ $3$ $(2,8,5)(3,4,9)$ $-\zeta_{3} + 1$ $\zeta_{3} + 2$
$3$ $3$ $(2,5,8)(3,9,4)$ $\zeta_{3} + 2$ $-\zeta_{3} + 1$
$6$ $3$ $(1,7,6)(2,5,8)$ $0$ $0$
$18$ $3$ $(1,4,2)(3,5,6)(7,9,8)$ $0$ $0$
$9$ $6$ $(1,6,7)(2,9,8,3,5,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$9$ $6$ $(1,7,6)(2,4,5,3,8,9)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$9$ $6$ $(1,6,7)(2,3,5,9,8,4)$ $-1$ $-1$
$9$ $6$ $(1,7,6)(2,4,8,9,5,3)$ $-1$ $-1$
$9$ $6$ $(2,9,8,3,5,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$9$ $6$ $(2,4,5,3,8,9)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$9$ $6$ $(1,9)(2,8,5)(3,7)(4,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$9$ $6$ $(1,9)(2,5,8)(3,7)(4,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$18$ $9$ $(1,4,2,7,9,8,6,3,5)$ $0$ $0$
$18$ $9$ $(1,2,9,6,5,4,7,8,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.