Properties

Label 3.19e2_37e2.4t4.1c1
Dimension 3
Group $A_4$
Conductor $ 19^{2} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$494209= 19^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 19 x^{2} + 19 x + 19 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 34 + 54\cdot 79 + 61\cdot 79^{2} + 4\cdot 79^{3} + 63\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 + 64\cdot 79 + 39\cdot 79^{2} + 33\cdot 79^{3} + 17\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 + 66\cdot 79 + 64\cdot 79^{2} + 47\cdot 79^{3} + 33\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 + 51\cdot 79 + 70\cdot 79^{2} + 71\cdot 79^{3} + 43\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.