Properties

Label 3.19e2_293e2.12t33.3
Dimension 3
Group $\PSL(2,5)$
Conductor $ 19^{2} \cdot 293^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$30991489= 19^{2} \cdot 293^{2} $
Artin number field: Splitting field of $f= x^{6} - 10 x^{4} - 7 x^{3} + 15 x^{2} + 14 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 19\cdot 61 + 21\cdot 61^{2} + 56\cdot 61^{3} + 46\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 60\cdot 61 + 2\cdot 61^{2} + 28\cdot 61^{3} + 39\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 47 + \left(27 a + 55\right)\cdot 61 + \left(34 a + 32\right)\cdot 61^{2} + \left(51 a + 56\right)\cdot 61^{3} + \left(56 a + 7\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 51 + \left(47 a + 30\right)\cdot 61 + \left(22 a + 24\right)\cdot 61^{2} + \left(55 a + 59\right)\cdot 61^{3} + \left(27 a + 20\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 a + 56 + \left(13 a + 11\right)\cdot 61 + 38 a\cdot 61^{2} + \left(5 a + 31\right)\cdot 61^{3} + \left(33 a + 54\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 a + 3 + \left(33 a + 5\right)\cdot 61 + \left(26 a + 40\right)\cdot 61^{2} + \left(9 a + 12\right)\cdot 61^{3} + \left(4 a + 13\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,5)(2,3,4)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(2,6)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,6,5)(2,3,4)$ $0$ $0$
$12$ $5$ $(1,5,6,4,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,6,2,5,4)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.