Properties

Label 3.19e2_293e2.12t33.2c2
Dimension 3
Group $A_5$
Conductor $ 19^{2} \cdot 293^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$30991489= 19^{2} \cdot 293^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 15 x^{3} + 36 x^{2} - 21 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 54 a + 38 + \left(42 a + 34\right)\cdot 61 + \left(47 a + 27\right)\cdot 61^{2} + \left(2 a + 3\right)\cdot 61^{3} + 9 a\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 a + 11 + \left(4 a + 50\right)\cdot 61 + \left(8 a + 60\right)\cdot 61^{2} + \left(15 a + 43\right)\cdot 61^{3} + \left(41 a + 2\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 60 + \left(56 a + 5\right)\cdot 61 + \left(52 a + 3\right)\cdot 61^{2} + \left(45 a + 51\right)\cdot 61^{3} + \left(19 a + 28\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 7\cdot 61 + 59\cdot 61^{2} + 3\cdot 61^{3} + 23\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 31 + \left(18 a + 23\right)\cdot 61 + \left(13 a + 32\right)\cdot 61^{2} + \left(58 a + 19\right)\cdot 61^{3} + \left(51 a + 6\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.