Properties

Label 3.1931e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 1931^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3728761= 1931^{2} $
Artin number field: Splitting field of $f= x^{4} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 163 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 117\cdot 163 + 128\cdot 163^{2} + 77\cdot 163^{3} + 44\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 111\cdot 163 + 52\cdot 163^{2} + 21\cdot 163^{3} + 143\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 155\cdot 163 + 23\cdot 163^{2} + 125\cdot 163^{3} + 47\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 73 + 105\cdot 163 + 120\cdot 163^{2} + 101\cdot 163^{3} + 90\cdot 163^{4} +O\left(163^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.