Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 a + 7 + \left(22 a + 28\right)\cdot 31 + \left(26 a + 6\right)\cdot 31^{2} + \left(21 a + 14\right)\cdot 31^{3} + \left(30 a + 9\right)\cdot 31^{4} + \left(24 a + 26\right)\cdot 31^{5} + \left(6 a + 24\right)\cdot 31^{6} + \left(8 a + 27\right)\cdot 31^{7} + \left(23 a + 26\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 18 a + 2 + \left(8 a + 29\right)\cdot 31 + \left(4 a + 6\right)\cdot 31^{2} + 9 a\cdot 31^{3} + 18\cdot 31^{4} + \left(6 a + 14\right)\cdot 31^{5} + \left(24 a + 13\right)\cdot 31^{6} + \left(22 a + 6\right)\cdot 31^{7} + \left(7 a + 3\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 29 + 24\cdot 31 + 27\cdot 31^{2} + 27\cdot 31^{3} + 31^{4} + 11\cdot 31^{5} + 24\cdot 31^{6} + 28\cdot 31^{7} + 13\cdot 31^{8} +O\left(31^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 30 + 2\cdot 31 + 8\cdot 31^{2} + 19\cdot 31^{3} + 17\cdot 31^{4} + 27\cdot 31^{5} + 13\cdot 31^{6} + 22\cdot 31^{7} + 17\cdot 31^{8} +O\left(31^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 6 a + 8 + \left(21 a + 1\right)\cdot 31 + \left(6 a + 10\right)\cdot 31^{2} + \left(11 a + 23\right)\cdot 31^{3} + \left(11 a + 1\right)\cdot 31^{4} + \left(30 a + 13\right)\cdot 31^{5} + \left(20 a + 2\right)\cdot 31^{6} + \left(11 a + 18\right)\cdot 31^{7} + 5 a\cdot 31^{8} +O\left(31^{ 9 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 25 a + 20 + \left(9 a + 6\right)\cdot 31 + \left(24 a + 2\right)\cdot 31^{2} + \left(19 a + 8\right)\cdot 31^{3} + \left(19 a + 13\right)\cdot 31^{4} + \left(10 a + 14\right)\cdot 31^{6} + \left(19 a + 20\right)\cdot 31^{7} + \left(25 a + 30\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,5)$ |
| $(1,2)(5,6)$ |
| $(1,3,2)(4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-3$ |
| $3$ | $2$ | $(3,4)$ | $1$ |
| $3$ | $2$ | $(2,5)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)(5,6)$ | $-1$ |
| $6$ | $2$ | $(1,2)(3,4)(5,6)$ | $1$ |
| $8$ | $3$ | $(1,3,2)(4,5,6)$ | $0$ |
| $6$ | $4$ | $(2,3,5,4)$ | $-1$ |
| $6$ | $4$ | $(1,6)(2,3,5,4)$ | $1$ |
| $8$ | $6$ | $(1,3,5,6,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.