Properties

Label 3.17_59e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 17 \cdot 59^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$59177= 17 \cdot 59^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - x^{3} + x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 18 + \left(16 a + 30\right)\cdot 43 + \left(2 a + 41\right)\cdot 43^{2} + \left(22 a + 38\right)\cdot 43^{3} + \left(5 a + 1\right)\cdot 43^{4} + 16\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 13 + \left(32 a + 3\right)\cdot 43 + \left(7 a + 15\right)\cdot 43^{2} + \left(36 a + 22\right)\cdot 43^{3} + \left(41 a + 28\right)\cdot 43^{4} + \left(30 a + 39\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 38 + \left(26 a + 26\right)\cdot 43 + \left(40 a + 27\right)\cdot 43^{2} + \left(20 a + 15\right)\cdot 43^{3} + \left(37 a + 28\right)\cdot 43^{4} + \left(42 a + 10\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 37 + \left(10 a + 11\right)\cdot 43 + \left(35 a + 33\right)\cdot 43^{2} + \left(6 a + 7\right)\cdot 43^{3} + \left(a + 34\right)\cdot 43^{4} + \left(12 a + 28\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 2 + 28\cdot 43 + 18\cdot 43^{2} + 29\cdot 43^{3} + 42\cdot 43^{4} + 22\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 + 28\cdot 43 + 35\cdot 43^{2} + 14\cdot 43^{3} + 36\cdot 43^{4} + 10\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2)(3,4,6)$
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(1,4)(2,3)$$-1$
$3$$2$$(2,3)$$1$
$6$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,4)(2,5)(3,6)$$1$
$8$$3$$(1,5,2)(3,4,6)$$0$
$6$$4$$(1,3,4,2)$$-1$
$6$$4$$(1,4)(2,6,3,5)$$1$
$8$$6$$(1,5,2,4,6,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.