Properties

Label 3.17_41e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 17 \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$28577= 17 \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} - x^{3} + 4 x^{2} - 12 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 7 + \left(22 a + 28\right)\cdot 31 + \left(26 a + 6\right)\cdot 31^{2} + \left(21 a + 14\right)\cdot 31^{3} + \left(30 a + 9\right)\cdot 31^{4} + \left(24 a + 26\right)\cdot 31^{5} + \left(6 a + 24\right)\cdot 31^{6} + \left(8 a + 27\right)\cdot 31^{7} + \left(23 a + 26\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 2 + \left(8 a + 29\right)\cdot 31 + \left(4 a + 6\right)\cdot 31^{2} + 9 a\cdot 31^{3} + 18\cdot 31^{4} + \left(6 a + 14\right)\cdot 31^{5} + \left(24 a + 13\right)\cdot 31^{6} + \left(22 a + 6\right)\cdot 31^{7} + \left(7 a + 3\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 29 + 24\cdot 31 + 27\cdot 31^{2} + 27\cdot 31^{3} + 31^{4} + 11\cdot 31^{5} + 24\cdot 31^{6} + 28\cdot 31^{7} + 13\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 30 + 2\cdot 31 + 8\cdot 31^{2} + 19\cdot 31^{3} + 17\cdot 31^{4} + 27\cdot 31^{5} + 13\cdot 31^{6} + 22\cdot 31^{7} + 17\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 8 + \left(21 a + 1\right)\cdot 31 + \left(6 a + 10\right)\cdot 31^{2} + \left(11 a + 23\right)\cdot 31^{3} + \left(11 a + 1\right)\cdot 31^{4} + \left(30 a + 13\right)\cdot 31^{5} + \left(20 a + 2\right)\cdot 31^{6} + \left(11 a + 18\right)\cdot 31^{7} + 5 a\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 20 + \left(9 a + 6\right)\cdot 31 + \left(24 a + 2\right)\cdot 31^{2} + \left(19 a + 8\right)\cdot 31^{3} + \left(19 a + 13\right)\cdot 31^{4} + \left(10 a + 14\right)\cdot 31^{6} + \left(19 a + 20\right)\cdot 31^{7} + \left(25 a + 30\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,2)(5,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(3,4)$ $1$
$3$ $2$ $(2,5)(3,4)$ $-1$
$6$ $2$ $(1,2)(5,6)$ $1$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$8$ $3$ $(1,3,2)(4,5,6)$ $0$
$6$ $4$ $(2,3,5,4)$ $1$
$6$ $4$ $(1,6)(2,3,5,4)$ $-1$
$8$ $6$ $(1,3,5,6,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.