Properties

Label 3.17_41e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 17 \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$28577= 17 \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} + 9 x^{3} + 4 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 43 a + 25 + \left(26 a + 38\right)\cdot 53 + \left(47 a + 25\right)\cdot 53^{2} + \left(7 a + 47\right)\cdot 53^{3} + \left(46 a + 11\right)\cdot 53^{4} + \left(22 a + 43\right)\cdot 53^{5} + \left(49 a + 44\right)\cdot 53^{6} + \left(15 a + 48\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 15 + \left(16 a + 7\right)\cdot 53 + \left(31 a + 49\right)\cdot 53^{2} + \left(43 a + 41\right)\cdot 53^{3} + \left(10 a + 40\right)\cdot 53^{4} + \left(41 a + 26\right)\cdot 53^{5} + \left(20 a + 48\right)\cdot 53^{6} + \left(46 a + 38\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 38 + \left(26 a + 49\right)\cdot 53 + \left(5 a + 29\right)\cdot 53^{2} + \left(45 a + 31\right)\cdot 53^{3} + \left(6 a + 29\right)\cdot 53^{4} + \left(30 a + 35\right)\cdot 53^{5} + \left(3 a + 7\right)\cdot 53^{6} + \left(37 a + 10\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 33 + \left(36 a + 42\right)\cdot 53 + \left(21 a + 51\right)\cdot 53^{2} + \left(9 a + 25\right)\cdot 53^{3} + \left(42 a + 40\right)\cdot 53^{4} + \left(11 a + 21\right)\cdot 53^{5} + \left(32 a + 37\right)\cdot 53^{6} + \left(6 a + 44\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 29 + 28\cdot 53 + 35\cdot 53^{2} + 38\cdot 53^{3} + 49\cdot 53^{4} + 10\cdot 53^{5} + 45\cdot 53^{6} + 11\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 20 + 45\cdot 53 + 19\cdot 53^{2} + 26\cdot 53^{3} + 39\cdot 53^{4} + 20\cdot 53^{5} + 28\cdot 53^{6} + 4\cdot 53^{7} +O\left(53^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)$
$(1,2)$
$(1,3,5)(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,4)(5,6)$$-3$
$3$$2$$(1,2)$$1$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(3,5)(4,6)$$-1$
$6$$2$$(1,2)(3,5)(4,6)$$1$
$8$$3$$(1,3,5)(2,4,6)$$0$
$6$$4$$(1,4,2,3)$$-1$
$6$$4$$(1,2)(3,6,4,5)$$1$
$8$$6$$(1,4,6,2,3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.