Properties

Label 3.1791.4t5.b.a
Dimension $3$
Group $S_4$
Conductor $1791$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.1791.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.199.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.1791.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 313 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 166 + 201\cdot 313 + 6\cdot 313^{2} + 25\cdot 313^{3} + 242\cdot 313^{4} +O(313^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 196 + 298\cdot 313 + 173\cdot 313^{2} + 281\cdot 313^{3} + 231\cdot 313^{4} +O(313^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 269 + 292\cdot 313 + 37\cdot 313^{2} + 307\cdot 313^{3} + 247\cdot 313^{4} +O(313^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 309 + 145\cdot 313 + 94\cdot 313^{2} + 12\cdot 313^{3} + 217\cdot 313^{4} +O(313^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$