Properties

Label 3.1732.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $1732$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1732\)\(\medspace = 2^{2} \cdot 433 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.1732.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.1732.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.1732.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + 3x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 15 + 19\cdot 107 + 64\cdot 107^{2} + 93\cdot 107^{3} + 9\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 41 + 24\cdot 107 + 23\cdot 107^{2} + 99\cdot 107^{3} + 70\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 69 + 39\cdot 107 + 65\cdot 107^{2} + 55\cdot 107^{3} + 5\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 90 + 23\cdot 107 + 61\cdot 107^{2} + 72\cdot 107^{3} + 20\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$