Properties

Label 3.1588.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $1588$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1588\)\(\medspace = 2^{2} \cdot 397 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.1588.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.1588.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.1588.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 3x^{2} + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 47 + 116\cdot 211 + 174\cdot 211^{2} + 132\cdot 211^{3} + 108\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 116 + 76\cdot 211 + 193\cdot 211^{2} + 57\cdot 211^{3} + 100\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 117 + 168\cdot 211 + 14\cdot 211^{2} + 66\cdot 211^{3} + 2\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 143 + 60\cdot 211 + 39\cdot 211^{2} + 165\cdot 211^{3} + 210\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$