Properties

Label 3.1553e2.12t33.1c2
Dimension 3
Group $A_5$
Conductor $ 1553^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$2411809= 1553^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{3} - 6 x^{2} + 16 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 173 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 29\cdot 173 + 81\cdot 173^{2} + 33\cdot 173^{3} + 35\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 38 + 142\cdot 173 + 103\cdot 173^{2} + 122\cdot 173^{3} + 11\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 87 + 99\cdot 173 + 59\cdot 173^{2} + 167\cdot 173^{3} + 146\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 94 + 162\cdot 173 + 81\cdot 173^{2} + 68\cdot 173^{3} + 34\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 121 + 85\cdot 173 + 19\cdot 173^{2} + 127\cdot 173^{3} + 117\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.