Basic invariants
Dimension: | $3$ |
Group: | $A_4\times C_2$ |
Conductor: | \(1539\)\(\medspace = 3^{4} \cdot 19 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.4.124659.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $A_4\times C_2$ |
Parity: | odd |
Determinant: | 1.19.2t1.a.a |
Projective image: | $A_4$ |
Projective stem field: | Galois closure of 4.0.29241.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - 3x^{4} - 2x^{3} + 3x^{2} + 3x - 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$:
\( x^{2} + 16x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 12 a + 6 + 15 a\cdot 17 + \left(4 a + 11\right)\cdot 17^{2} + \left(9 a + 10\right)\cdot 17^{3} + \left(13 a + 16\right)\cdot 17^{4} + \left(15 a + 6\right)\cdot 17^{5} +O(17^{6})\)
$r_{ 2 }$ |
$=$ |
\( 5 a + 1 + \left(a + 4\right)\cdot 17 + 12 a\cdot 17^{2} + \left(7 a + 15\right)\cdot 17^{3} + \left(3 a + 3\right)\cdot 17^{4} + \left(a + 9\right)\cdot 17^{5} +O(17^{6})\)
| $r_{ 3 }$ |
$=$ |
\( 13 a + \left(14 a + 3\right)\cdot 17 + \left(4 a + 15\right)\cdot 17^{2} + \left(7 a + 1\right)\cdot 17^{3} + \left(16 a + 13\right)\cdot 17^{4} + \left(3 a + 12\right)\cdot 17^{5} +O(17^{6})\)
| $r_{ 4 }$ |
$=$ |
\( 4 a + 13 + \left(2 a + 4\right)\cdot 17 + \left(12 a + 5\right)\cdot 17^{2} + \left(9 a + 4\right)\cdot 17^{3} + 5\cdot 17^{4} + 13 a\cdot 17^{5} +O(17^{6})\)
| $r_{ 5 }$ |
$=$ |
\( 12 + 13\cdot 17 + 17^{2} + 3\cdot 17^{3} + 5\cdot 17^{4} + 10\cdot 17^{5} +O(17^{6})\)
| $r_{ 6 }$ |
$=$ |
\( 2 + 8\cdot 17 + 16\cdot 17^{3} + 6\cdot 17^{4} + 11\cdot 17^{5} +O(17^{6})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $3$ |
$1$ | $2$ | $(1,2)(3,4)(5,6)$ | $-3$ |
$3$ | $2$ | $(1,2)$ | $1$ |
$3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
$4$ | $3$ | $(1,5,3)(2,6,4)$ | $0$ |
$4$ | $3$ | $(1,3,5)(2,4,6)$ | $0$ |
$4$ | $6$ | $(1,6,4,2,5,3)$ | $0$ |
$4$ | $6$ | $(1,3,5,2,4,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.