Properties

Label 3.15376.4t4.a.a
Dimension $3$
Group $A_4$
Conductor $15376$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $A_4$
Conductor: \(15376\)\(\medspace = 2^{4} \cdot 31^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.15376.1
Galois orbit size: $1$
Smallest permutation container: $A_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.0.15376.1

Defining polynomial

$f(x)$$=$ \( x^{4} + 7x^{2} - 2x + 14 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 60 + 26\cdot 151 + 95\cdot 151^{2} + 134\cdot 151^{3} + 112\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 62 + 80\cdot 151 + 36\cdot 151^{2} + 92\cdot 151^{3} + 81\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 80 + 24\cdot 151 + 148\cdot 151^{2} + 86\cdot 151^{3} + 107\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 100 + 19\cdot 151 + 22\cdot 151^{2} + 139\cdot 151^{3} + 150\cdot 151^{4} +O(151^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.