Properties

Label 3.1509.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $1509$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1509\)\(\medspace = 3 \cdot 503 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.1509.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.1509.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.0.1509.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 7 + 95\cdot 167 + 80\cdot 167^{2} + 62\cdot 167^{3} + 13\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 76 + 13\cdot 167 + 105\cdot 167^{2} + 21\cdot 167^{3} + 49\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 117 + 71\cdot 167 + 100\cdot 167^{2} + 133\cdot 167^{3} + 89\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 135 + 153\cdot 167 + 47\cdot 167^{2} + 116\cdot 167^{3} + 14\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$