Properties

Label 3.1489.4t5.a
Dimension $3$
Group $S_4$
Conductor $1489$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:\(1489\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.1489.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Projective image: $S_4$
Projective field: Galois closure of 4.0.1489.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 6 + 59\cdot 61 + 55\cdot 61^{2} + 3\cdot 61^{3} + 59\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 21 + 45\cdot 61 + 16\cdot 61^{2} + 42\cdot 61^{3} + 19\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 44 + 20\cdot 61 + 44\cdot 61^{2} + 18\cdot 61^{3} + 59\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 52 + 57\cdot 61 + 4\cdot 61^{2} + 57\cdot 61^{3} + 44\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.