Basic invariants
Dimension: | $3$ |
Group: | $S_4$ |
Conductor: | \(1472\)\(\medspace = 2^{6} \cdot 23 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.2.1472.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_4$ |
Parity: | odd |
Determinant: | 1.23.2t1.a.a |
Projective image: | $S_4$ |
Projective stem field: | Galois closure of 4.2.1472.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 2x^{3} + 2x^{2} - 2 \) . |
The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 21 + 203\cdot 223 + 74\cdot 223^{2} + 170\cdot 223^{3} + 59\cdot 223^{4} +O(223^{5})\) |
$r_{ 2 }$ | $=$ | \( 133 + 78\cdot 223 + 80\cdot 223^{2} + 153\cdot 223^{3} + 93\cdot 223^{4} +O(223^{5})\) |
$r_{ 3 }$ | $=$ | \( 137 + 212\cdot 223 + 187\cdot 223^{2} + 167\cdot 223^{3} + 195\cdot 223^{4} +O(223^{5})\) |
$r_{ 4 }$ | $=$ | \( 157 + 174\cdot 223 + 102\cdot 223^{2} + 177\cdot 223^{3} + 96\cdot 223^{4} +O(223^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $3$ | |
$3$ | $2$ | $(1,2)(3,4)$ | $-1$ | |
$6$ | $2$ | $(1,2)$ | $1$ | ✓ |
$8$ | $3$ | $(1,2,3)$ | $0$ | |
$6$ | $4$ | $(1,2,3,4)$ | $-1$ |