Properties

Label 3.1472.4t5.b.a
Dimension $3$
Group $S_4$
Conductor $1472$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1472\)\(\medspace = 2^{6} \cdot 23 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.1472.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.23.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.1472.1

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 2x^{2} - 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 21 + 203\cdot 223 + 74\cdot 223^{2} + 170\cdot 223^{3} + 59\cdot 223^{4} +O(223^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 133 + 78\cdot 223 + 80\cdot 223^{2} + 153\cdot 223^{3} + 93\cdot 223^{4} +O(223^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 137 + 212\cdot 223 + 187\cdot 223^{2} + 167\cdot 223^{3} + 195\cdot 223^{4} +O(223^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 157 + 174\cdot 223 + 102\cdot 223^{2} + 177\cdot 223^{3} + 96\cdot 223^{4} +O(223^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$