Properties

Label 3.1444.6t8.a.a
Dimension $3$
Group $S_4$
Conductor $1444$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1444\)\(\medspace = 2^{2} \cdot 19^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.27436.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.27436.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 2x^{2} - 6x - 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 9 a + 6 + \left(3 a + 12\right)\cdot 13 + \left(11 a + 5\right)\cdot 13^{2} + \left(4 a + 8\right)\cdot 13^{3} + \left(5 a + 10\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 + 13 + 12\cdot 13^{2} + 3\cdot 13^{3} + 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 + 4\cdot 13 + 7\cdot 13^{2} + 11\cdot 13^{3} + 2\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a + 2 + \left(9 a + 7\right)\cdot 13 + a\cdot 13^{2} + \left(8 a + 2\right)\cdot 13^{3} + \left(7 a + 11\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$