Properties

Label 3.1436.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $1436$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1436\)\(\medspace = 2^{2} \cdot 359 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.1436.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.1436.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.0.1436.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + 3x^{2} + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 9 + 3\cdot 103 + 6\cdot 103^{2} + 45\cdot 103^{3} + 5\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 25 + 51\cdot 103 + 22\cdot 103^{2} + 10\cdot 103^{3} + 21\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 31 + 6\cdot 103 + 14\cdot 103^{2} + 97\cdot 103^{3} + 49\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 39 + 42\cdot 103 + 60\cdot 103^{2} + 53\cdot 103^{3} + 26\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$