Basic invariants
Dimension: | $3$ |
Group: | $S_4$ |
Conductor: | \(1424\)\(\medspace = 2^{4} \cdot 89 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.2.1424.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_4$ |
Parity: | odd |
Determinant: | 1.356.2t1.a.a |
Projective image: | $S_4$ |
Projective stem field: | Galois closure of 4.2.1424.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} + x^{2} - 2x - 1 \) . |
The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 3 + 20\cdot 83 + 59\cdot 83^{2} + 64\cdot 83^{3} + 75\cdot 83^{4} +O(83^{5})\) |
$r_{ 2 }$ | $=$ | \( 32 + 74\cdot 83 + 19\cdot 83^{2} + 23\cdot 83^{3} + 70\cdot 83^{4} +O(83^{5})\) |
$r_{ 3 }$ | $=$ | \( 63 + 5\cdot 83 + 16\cdot 83^{2} + 15\cdot 83^{3} + 30\cdot 83^{4} +O(83^{5})\) |
$r_{ 4 }$ | $=$ | \( 68 + 65\cdot 83 + 70\cdot 83^{2} + 62\cdot 83^{3} + 72\cdot 83^{4} +O(83^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $3$ | |
$3$ | $2$ | $(1,2)(3,4)$ | $-1$ | |
$6$ | $2$ | $(1,2)$ | $1$ | ✓ |
$8$ | $3$ | $(1,2,3)$ | $0$ | |
$6$ | $4$ | $(1,2,3,4)$ | $-1$ |