Properties

Label 3.1423.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $1423$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1423\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.1423.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.1423.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.1423.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + x^{2} - 2x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 23 + 35\cdot 61 + 48\cdot 61^{2} + 3\cdot 61^{3} + 49\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 49 + 54\cdot 61 + 56\cdot 61^{2} + 36\cdot 61^{3} + 28\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 54 + 28\cdot 61 + 47\cdot 61^{2} + 10\cdot 61^{3} + 20\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 58 + 2\cdot 61 + 30\cdot 61^{2} + 9\cdot 61^{3} + 24\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$