Properties

Label 3.13e3_491e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 13^{3} \cdot 491^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$529654957= 13^{3} \cdot 491^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 8 x^{4} + 44 x^{3} - 14 x^{2} - 43 x - 35 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 38 + \left(2 a + 3\right)\cdot 53 + \left(24 a + 13\right)\cdot 53^{2} + \left(35 a + 5\right)\cdot 53^{3} + \left(45 a + 13\right)\cdot 53^{4} + \left(43 a + 33\right)\cdot 53^{5} + \left(38 a + 19\right)\cdot 53^{6} + \left(34 a + 45\right)\cdot 53^{7} + \left(52 a + 36\right)\cdot 53^{8} + \left(34 a + 46\right)\cdot 53^{9} + \left(33 a + 47\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 40 a + 37 + \left(50 a + 52\right)\cdot 53 + 28 a\cdot 53^{2} + \left(17 a + 17\right)\cdot 53^{3} + \left(7 a + 1\right)\cdot 53^{4} + \left(9 a + 4\right)\cdot 53^{5} + \left(14 a + 25\right)\cdot 53^{6} + \left(18 a + 39\right)\cdot 53^{7} + \left(18 a + 28\right)\cdot 53^{9} + \left(19 a + 41\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 43 + 37\cdot 53 + 7\cdot 53^{2} + 41\cdot 53^{3} + 3\cdot 53^{4} + 4\cdot 53^{5} + 40\cdot 53^{6} + 17\cdot 53^{7} + 14\cdot 53^{8} + 36\cdot 53^{9} + 10\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 31 a + 28 + \left(43 a + 15\right)\cdot 53 + \left(49 a + 48\right)\cdot 53^{2} + \left(6 a + 35\right)\cdot 53^{3} + \left(42 a + 43\right)\cdot 53^{4} + \left(16 a + 15\right)\cdot 53^{5} + \left(40 a + 21\right)\cdot 53^{6} + \left(28 a + 45\right)\cdot 53^{7} + \left(8 a + 20\right)\cdot 53^{8} + \left(40 a + 43\right)\cdot 53^{9} + \left(22 a + 44\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 21 + 49\cdot 53 + 43\cdot 53^{2} + 45\cdot 53^{3} + 50\cdot 53^{4} + 7\cdot 53^{5} + 46\cdot 53^{6} + 49\cdot 53^{7} + 6\cdot 53^{8} + 21\cdot 53^{9} + 24\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 46 + \left(9 a + 52\right)\cdot 53 + \left(3 a + 44\right)\cdot 53^{2} + \left(46 a + 13\right)\cdot 53^{3} + \left(10 a + 46\right)\cdot 53^{4} + \left(36 a + 40\right)\cdot 53^{5} + \left(12 a + 6\right)\cdot 53^{6} + \left(24 a + 14\right)\cdot 53^{7} + \left(44 a + 26\right)\cdot 53^{8} + \left(12 a + 36\right)\cdot 53^{9} + \left(30 a + 42\right)\cdot 53^{10} +O\left(53^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(5,6)$
$(3,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(1,6)(3,5)$ $-1$
$6$ $2$ $(1,2)(4,6)$ $-1$
$6$ $2$ $(1,2)(3,5)(4,6)$ $1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,3,6,5)$ $-1$
$6$ $4$ $(1,4,6,2)(3,5)$ $1$
$8$ $6$ $(1,2,3,6,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.