Properties

Label 3.13e3_331e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 13^{3} \cdot 331^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$240705517= 13^{3} \cdot 331^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 91 x^{4} + 283 x^{3} + 2837 x^{2} - 15066 x + 57268 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 24\cdot 47 + 29\cdot 47^{2} + 22\cdot 47^{3} + 25\cdot 47^{4} + 44\cdot 47^{5} + 34\cdot 47^{6} + 32\cdot 47^{7} + 7\cdot 47^{8} + 11\cdot 47^{9} + 31\cdot 47^{10} + 17\cdot 47^{11} + 18\cdot 47^{12} + 8\cdot 47^{13} + 18\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 41 + \left(22 a + 45\right)\cdot 47 + \left(26 a + 39\right)\cdot 47^{2} + \left(33 a + 20\right)\cdot 47^{3} + \left(45 a + 11\right)\cdot 47^{4} + \left(2 a + 14\right)\cdot 47^{5} + \left(7 a + 26\right)\cdot 47^{6} + \left(30 a + 6\right)\cdot 47^{7} + \left(12 a + 13\right)\cdot 47^{8} + \left(13 a + 34\right)\cdot 47^{9} + \left(43 a + 29\right)\cdot 47^{10} + \left(15 a + 36\right)\cdot 47^{11} + \left(7 a + 4\right)\cdot 47^{12} + \left(17 a + 18\right)\cdot 47^{13} + \left(28 a + 24\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 41 + \left(20 a + 38\right)\cdot 47 + \left(20 a + 2\right)\cdot 47^{2} + \left(12 a + 23\right)\cdot 47^{3} + \left(30 a + 44\right)\cdot 47^{4} + \left(25 a + 43\right)\cdot 47^{5} + \left(26 a + 33\right)\cdot 47^{6} + \left(38 a + 29\right)\cdot 47^{7} + \left(31 a + 46\right)\cdot 47^{8} + \left(8 a + 25\right)\cdot 47^{9} + \left(16 a + 4\right)\cdot 47^{10} + \left(12 a + 34\right)\cdot 47^{11} + \left(40 a + 20\right)\cdot 47^{12} + \left(26 a + 29\right)\cdot 47^{13} + \left(25 a + 20\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 10 + \left(24 a + 35\right)\cdot 47 + \left(20 a + 23\right)\cdot 47^{2} + \left(13 a + 14\right)\cdot 47^{3} + \left(a + 22\right)\cdot 47^{4} + \left(44 a + 21\right)\cdot 47^{5} + \left(39 a + 37\right)\cdot 47^{6} + \left(16 a + 12\right)\cdot 47^{7} + \left(34 a + 8\right)\cdot 47^{8} + \left(33 a + 1\right)\cdot 47^{9} + \left(3 a + 9\right)\cdot 47^{10} + \left(31 a + 25\right)\cdot 47^{11} + \left(39 a + 3\right)\cdot 47^{12} + \left(29 a + 45\right)\cdot 47^{13} + \left(18 a + 16\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 34 + 31\cdot 47 + 21\cdot 47^{2} + 32\cdot 47^{3} + 38\cdot 47^{4} + 45\cdot 47^{5} + 40\cdot 47^{6} + 25\cdot 47^{7} + 40\cdot 47^{8} + 9\cdot 47^{9} + 38\cdot 47^{10} + 31\cdot 47^{11} + 4\cdot 47^{12} + 44\cdot 47^{13} + 15\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 36 + \left(26 a + 11\right)\cdot 47 + \left(26 a + 23\right)\cdot 47^{2} + \left(34 a + 27\right)\cdot 47^{3} + \left(16 a + 45\right)\cdot 47^{4} + \left(21 a + 17\right)\cdot 47^{5} + \left(20 a + 14\right)\cdot 47^{6} + \left(8 a + 33\right)\cdot 47^{7} + \left(15 a + 24\right)\cdot 47^{8} + \left(38 a + 11\right)\cdot 47^{9} + \left(30 a + 28\right)\cdot 47^{10} + \left(34 a + 42\right)\cdot 47^{11} + \left(6 a + 41\right)\cdot 47^{12} + \left(20 a + 42\right)\cdot 47^{13} + \left(21 a + 44\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,4)(5,6)$
$(1,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,3)(4,6)$ $-3$
$3$ $2$ $(2,3)$ $1$
$3$ $2$ $(1,5)(2,3)$ $-1$
$6$ $2$ $(1,4)(5,6)$ $1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,4,2)(3,5,6)$ $0$
$6$ $4$ $(1,2,5,3)$ $1$
$6$ $4$ $(1,2,5,3)(4,6)$ $-1$
$8$ $6$ $(1,4,2,5,6,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.