Properties

Label 3.13e3_31e2.9t6.1
Dimension 3
Group $C_9:C_3$
Conductor $ 13^{3} \cdot 31^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_9:C_3$
Conductor:$2111317= 13^{3} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} - 30 x^{7} + 17 x^{6} + 250 x^{5} + 73 x^{4} - 513 x^{3} - 239 x^{2} + 235 x + 125 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_9:C_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{3} + 3 x + 51 $
Roots:
$r_{ 1 }$ $=$ $ 26 a^{2} + 44 a + 6 + \left(10 a^{2} + 11 a + 20\right)\cdot 53 + \left(13 a^{2} + 22 a + 2\right)\cdot 53^{2} + \left(23 a^{2} + 45 a + 51\right)\cdot 53^{3} + \left(25 a^{2} + 31 a + 13\right)\cdot 53^{4} + \left(21 a^{2} + 25 a + 21\right)\cdot 53^{5} + \left(43 a^{2} + 50 a + 8\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 16 + 45\cdot 53 + 4\cdot 53^{2} + 46\cdot 53^{3} + 48\cdot 53^{4} + 24\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 17 + 34\cdot 53 + 11\cdot 53^{2} + 37\cdot 53^{3} + 53^{4} + 2\cdot 53^{5} + 43\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 + 38\cdot 53 + 32\cdot 53^{2} + 24\cdot 53^{3} + 28\cdot 53^{4} + 47\cdot 53^{5} + 35\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 32 a^{2} + 47 a + 18 + \left(9 a^{2} + 36 a + 18\right)\cdot 53 + \left(12 a^{2} + 31 a\right)\cdot 53^{2} + \left(26 a + 5\right)\cdot 53^{3} + \left(9 a^{2} + 46 a + 34\right)\cdot 53^{4} + \left(17 a^{2} + 11 a + 12\right)\cdot 53^{5} + \left(23 a^{2} + 21 a + 21\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 29 a^{2} + 51 a + 3 + \left(3 a^{2} + 2 a + 4\right)\cdot 53 + \left(13 a^{2} + 10 a + 16\right)\cdot 53^{2} + \left(14 a^{2} + 18 a + 23\right)\cdot 53^{3} + \left(4 a^{2} + 9 a + 1\right)\cdot 53^{4} + \left(28 a^{2} + 52 a + 8\right)\cdot 53^{5} + \left(20 a^{2} + 37 a + 32\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 14 a^{2} + 42 a + 26 + \left(38 a^{2} + 38 a + 20\right)\cdot 53 + \left(11 a^{2} + 4 a + 13\right)\cdot 53^{2} + \left(50 a^{2} + 40 a + 42\right)\cdot 53^{3} + \left(2 a^{2} + 43 a + 51\right)\cdot 53^{4} + \left(14 a^{2} + 19 a + 32\right)\cdot 53^{5} + \left(23 a^{2} + 46 a + 37\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 48 a^{2} + 15 a + 50 + \left(32 a^{2} + 4 a + 11\right)\cdot 53 + \left(27 a^{2} + 52 a + 31\right)\cdot 53^{2} + \left(29 a^{2} + 33 a + 10\right)\cdot 53^{3} + \left(18 a^{2} + 27 a\right)\cdot 53^{4} + \left(14 a^{2} + 15 a + 7\right)\cdot 53^{5} + \left(39 a^{2} + 34 a\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{2} + 13 a + 18 + \left(11 a^{2} + 11 a + 19\right)\cdot 53 + \left(28 a^{2} + 38 a + 46\right)\cdot 53^{2} + \left(41 a^{2} + 47 a + 24\right)\cdot 53^{3} + \left(45 a^{2} + 52 a + 31\right)\cdot 53^{4} + \left(10 a^{2} + 33 a + 26\right)\cdot 53^{5} + \left(9 a^{2} + 21 a + 9\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,6,8,4,7,5,3,9)$
$(2,4,3)(6,9,7)$
$(1,8,5)(2,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$1$ $3$ $(1,8,5)(2,4,3)(6,7,9)$ $3 \zeta_{3}$ $-3 \zeta_{3} - 3$
$1$ $3$ $(1,5,8)(2,3,4)(6,9,7)$ $-3 \zeta_{3} - 3$ $3 \zeta_{3}$
$3$ $3$ $(1,8,5)(2,3,4)$ $0$ $0$
$3$ $3$ $(1,5,8)(2,4,3)$ $0$ $0$
$3$ $9$ $(1,2,6,8,4,7,5,3,9)$ $0$ $0$
$3$ $9$ $(1,6,4,5,9,2,8,7,3)$ $0$ $0$
$3$ $9$ $(1,3,9,8,2,6,5,4,7)$ $0$ $0$
$3$ $9$ $(1,9,2,5,7,3,8,6,4)$ $0$ $0$
$3$ $9$ $(1,7,3,5,6,4,8,9,2)$ $0$ $0$
$3$ $9$ $(1,3,6,8,2,7,5,4,9)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.