Properties

Label 3.13e2_31.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 13^{2} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$5239= 13^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + 7 x^{3} - x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 43 + 26\cdot 47 + 25\cdot 47^{2} + 22\cdot 47^{3} + 19\cdot 47^{4} + 44\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 37 a + 38 + \left(38 a + 8\right)\cdot 47 + \left(13 a + 19\right)\cdot 47^{2} + \left(23 a + 39\right)\cdot 47^{3} + 14 a\cdot 47^{4} + \left(45 a + 35\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 18 + \left(8 a + 2\right)\cdot 47 + \left(33 a + 8\right)\cdot 47^{2} + \left(23 a + 25\right)\cdot 47^{3} + \left(32 a + 6\right)\cdot 47^{4} + \left(a + 17\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 42 + \left(25 a + 45\right)\cdot 47 + \left(16 a + 15\right)\cdot 47^{2} + \left(9 a + 38\right)\cdot 47^{3} + \left(38 a + 42\right)\cdot 47^{4} + \left(24 a + 42\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 19 + \left(21 a + 37\right)\cdot 47 + \left(30 a + 23\right)\cdot 47^{2} + \left(37 a + 40\right)\cdot 47^{3} + \left(8 a + 15\right)\cdot 47^{4} + \left(22 a + 7\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 29 + 19\cdot 47 + 47^{2} + 22\cdot 47^{3} + 8\cdot 47^{4} + 41\cdot 47^{5} +O\left(47^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(4,5)$
$(2,3)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-3$
$3$ $2$ $(1,6)$ $1$
$3$ $2$ $(1,6)(2,3)$ $-1$
$4$ $3$ $(1,4,2)(3,6,5)$ $0$
$4$ $3$ $(1,2,4)(3,5,6)$ $0$
$4$ $6$ $(1,5,3,6,4,2)$ $0$
$4$ $6$ $(1,2,4,6,3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.