Properties

Label 3.5058001.12t33.a.b
Dimension $3$
Group $A_5$
Conductor $5058001$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $A_5$
Conductor: \(5058001\)\(\medspace = 13^{2} \cdot 173^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.5058001.1
Galois orbit size: $2$
Smallest permutation container: $A_5$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $A_5$
Projective stem field: Galois closure of 5.1.5058001.1

Defining polynomial

$f(x)$$=$ \( x^{5} - 2x^{4} + 8x^{3} + x^{2} + 4x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 373 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 71 + 45\cdot 373 + 337\cdot 373^{2} + 59\cdot 373^{3} + 310\cdot 373^{4} +O(373^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 105 + 171\cdot 373 + 232\cdot 373^{2} + 184\cdot 373^{3} + 211\cdot 373^{4} +O(373^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 218 + 9\cdot 373 + 315\cdot 373^{2} + 81\cdot 373^{3} + 245\cdot 373^{4} +O(373^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 363 + 53\cdot 373 + 34\cdot 373^{2} + 53\cdot 373^{3} + 141\cdot 373^{4} +O(373^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 364 + 92\cdot 373 + 200\cdot 373^{2} + 366\cdot 373^{3} + 210\cdot 373^{4} +O(373^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$