Properties

Label 3.13e2_173e2.12t33.1c2
Dimension 3
Group $A_5$
Conductor $ 13^{2} \cdot 173^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$5058001= 13^{2} \cdot 173^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 8 x^{3} + x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 373 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 71 + 45\cdot 373 + 337\cdot 373^{2} + 59\cdot 373^{3} + 310\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 105 + 171\cdot 373 + 232\cdot 373^{2} + 184\cdot 373^{3} + 211\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 218 + 9\cdot 373 + 315\cdot 373^{2} + 81\cdot 373^{3} + 245\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 363 + 53\cdot 373 + 34\cdot 373^{2} + 53\cdot 373^{3} + 141\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 364 + 92\cdot 373 + 200\cdot 373^{2} + 366\cdot 373^{3} + 210\cdot 373^{4} +O\left(373^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.