Properties

Label 3.13e2_103e2.9t7.3c1
Dimension 3
Group $C_3^2:C_3$
Conductor $ 13^{2} \cdot 103^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$1792921= 13^{2} \cdot 103^{2} $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 57 x^{7} + 75 x^{6} + 827 x^{5} - 1099 x^{4} - 3585 x^{3} + 4222 x^{2} + 2676 x - 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{3} + 7 x + 59 $
Roots:
$r_{ 1 }$ $=$ $ 22 a^{2} + 16 a + 46 + \left(16 a^{2} + 27 a + 1\right)\cdot 61 + \left(46 a^{2} + 25 a + 8\right)\cdot 61^{2} + \left(51 a^{2} + 4 a + 22\right)\cdot 61^{3} + \left(11 a^{2} + 4 a + 34\right)\cdot 61^{4} + \left(51 a^{2} + 34 a + 2\right)\cdot 61^{5} + \left(19 a^{2} + 21 a + 24\right)\cdot 61^{6} + \left(38 a^{2} + 21 a + 46\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 18 + 20\cdot 61 + 14\cdot 61^{2} + 54\cdot 61^{3} + 58\cdot 61^{4} + 58\cdot 61^{5} + 61^{6} + 40\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 14 a^{2} + 23 a + 41 + \left(51 a^{2} + 34 a + 5\right)\cdot 61 + \left(10 a^{2} + 22 a + 8\right)\cdot 61^{2} + \left(21 a^{2} + 28 a + 47\right)\cdot 61^{3} + \left(51 a^{2} + 25 a + 14\right)\cdot 61^{4} + \left(28 a^{2} + 9 a + 51\right)\cdot 61^{5} + \left(29 a^{2} + 38 a + 8\right)\cdot 61^{6} + \left(27 a^{2} + 38 a + 43\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 33 a^{2} + 49 a + 28 + \left(6 a^{2} + 10 a\right)\cdot 61 + \left(55 a^{2} + 48 a + 52\right)\cdot 61^{2} + \left(11 a^{2} + 41 a + 3\right)\cdot 61^{3} + \left(55 a^{2} + 24 a + 53\right)\cdot 61^{4} + \left(21 a^{2} + 18 a + 18\right)\cdot 61^{5} + \left(36 a^{2} + 60 a\right)\cdot 61^{6} + \left(30 a^{2} + 53 a + 17\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 14 a^{2} + 50 a + 41 + \left(3 a^{2} + 15 a + 25\right)\cdot 61 + \left(56 a^{2} + 51 a + 56\right)\cdot 61^{2} + \left(27 a^{2} + 51 a + 37\right)\cdot 61^{3} + \left(15 a^{2} + 10 a + 50\right)\cdot 61^{4} + \left(10 a^{2} + 33 a + 45\right)\cdot 61^{5} + \left(56 a^{2} + 23 a + 31\right)\cdot 61^{6} + \left(2 a^{2} + 29 a + 50\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 33 a^{2} + 28 a + 16 + \left(37 a^{2} + 7 a + 19\right)\cdot 61 + \left(36 a^{2} + 37 a + 44\right)\cdot 61^{2} + \left(42 a^{2} + 29 a + 60\right)\cdot 61^{3} + \left(48 a^{2} + 2\right)\cdot 61^{4} + \left(17 a^{2} + 21 a + 50\right)\cdot 61^{5} + \left(29 a^{2} + 42 a + 47\right)\cdot 61^{6} + \left(60 a^{2} + 31 a + 27\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 55 + 47\cdot 61 + 3\cdot 61^{2} + 30\cdot 61^{3} + 9\cdot 61^{4} + 35\cdot 61^{5} + 20\cdot 61^{6} + 9\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 49 + 61 + 61^{2} + 58\cdot 61^{3} + 58\cdot 61^{4} + 10\cdot 61^{5} + 20\cdot 61^{6} + 54\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 6 a^{2} + 17 a + 12 + \left(7 a^{2} + 26 a + 60\right)\cdot 61 + \left(39 a^{2} + 59 a + 55\right)\cdot 61^{2} + \left(27 a^{2} + 26 a + 51\right)\cdot 61^{3} + \left(56 a + 21\right)\cdot 61^{4} + \left(53 a^{2} + 5 a + 31\right)\cdot 61^{5} + \left(11 a^{2} + 58 a + 27\right)\cdot 61^{6} + \left(23 a^{2} + 7 a + 16\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2)(4,8,6)(5,7,9)$
$(2,8,7)(3,5,4)$
$(1,6,9)(2,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,9,6)(2,7,8)(3,5,4)$$3 \zeta_{3}$
$1$$3$$(1,6,9)(2,8,7)(3,4,5)$$-3 \zeta_{3} - 3$
$3$$3$$(1,3,2)(4,8,6)(5,7,9)$$0$
$3$$3$$(1,2,3)(4,6,8)(5,9,7)$$0$
$3$$3$$(1,6,9)(2,7,8)$$0$
$3$$3$$(1,9,6)(2,8,7)$$0$
$3$$3$$(1,5,2)(3,8,6)(4,7,9)$$0$
$3$$3$$(1,2,5)(3,6,8)(4,9,7)$$0$
$3$$3$$(1,4,2)(3,7,9)(5,8,6)$$0$
$3$$3$$(1,2,4)(3,9,7)(5,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.