Basic invariants
Dimension: | $3$ |
Group: | $S_4$ |
Conductor: | \(1257\)\(\medspace = 3 \cdot 419 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.1257.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_4$ |
Parity: | even |
Determinant: | 1.1257.2t1.a.a |
Projective image: | $S_4$ |
Projective stem field: | Galois closure of 4.0.1257.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{2} - x + 2 \) . |
The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 13 + 38\cdot 101 + 41\cdot 101^{2} + 56\cdot 101^{3} + 43\cdot 101^{4} +O(101^{5})\) |
$r_{ 2 }$ | $=$ | \( 18 + 36\cdot 101 + 36\cdot 101^{2} + 24\cdot 101^{3} + 32\cdot 101^{4} +O(101^{5})\) |
$r_{ 3 }$ | $=$ | \( 21 + 49\cdot 101 + 56\cdot 101^{2} + 36\cdot 101^{3} + 18\cdot 101^{4} +O(101^{5})\) |
$r_{ 4 }$ | $=$ | \( 49 + 78\cdot 101 + 67\cdot 101^{2} + 84\cdot 101^{3} + 6\cdot 101^{4} +O(101^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $3$ | |
$3$ | $2$ | $(1,2)(3,4)$ | $-1$ | ✓ |
$6$ | $2$ | $(1,2)$ | $1$ | |
$8$ | $3$ | $(1,2,3)$ | $0$ | |
$6$ | $4$ | $(1,2,3,4)$ | $-1$ |