Properties

Label 3.1257.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $1257$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(1257\)\(\medspace = 3 \cdot 419 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.1257.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.1257.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.0.1257.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{2} - x + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 13 + 38\cdot 101 + 41\cdot 101^{2} + 56\cdot 101^{3} + 43\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 18 + 36\cdot 101 + 36\cdot 101^{2} + 24\cdot 101^{3} + 32\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 + 49\cdot 101 + 56\cdot 101^{2} + 36\cdot 101^{3} + 18\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 49 + 78\cdot 101 + 67\cdot 101^{2} + 84\cdot 101^{3} + 6\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$